中文版 | English
题名

Using short-interval landslide inventories to build short-term and overall spatial prediction models for earthquake-triggered landslides based on machine learning for the 2018 Lombok earthquake sequence

作者
通讯作者Chen, Kejie
发表日期
2022-08-01
DOI
发表期刊
ISSN
0921-030X
EISSN
1573-0840
摘要
During an earthquake sequence, there are often multiple recurring landslides. Understanding the spatial distribution of the landslides triggered by the first earthquake can help us predict the landslide susceptibility for subsequent shakes over a short term. This study used two landslide inventories from the Lombok earthquake sequence in Indonesia in 2018 to construct a short-term secondary disaster prediction model and an overall spatial prediction model using four machine learning algorithms. The average accuracy of the positive samples predicted by the prediction model was 7.1% lower than that of the short-term model. The highest accuracy of the overall prediction model was 14.9% higher, on average, and the area under the ROC curve (AUC) score was 8.1% higher, on average, but the corresponding probability thresholds were lower. The reason for this difference is that, in the short-term prediction model, since most of the landslides in the first landslide inventory were prone to fail two or more times due to the effect of multiple earthquakes, the prediction results have a high positive rate. This feature of the short-term prediction model makes it suitable for landslide rescue guidance in a sequence of earthquakes. In contrast, the overall prediction model can better represent the spatial distribution of the earthquake-triggered landslides in the area.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[42074024]
WOS研究方向
Geology ; Meteorology & Atmospheric Sciences ; Water Resources
WOS类目
Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS记录号
WOS:000837518500001
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382299
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Guangdong, Peoples R China
2.GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Xue, Changhu,Chen, Kejie,Tang, Hui,et al. Using short-interval landslide inventories to build short-term and overall spatial prediction models for earthquake-triggered landslides based on machine learning for the 2018 Lombok earthquake sequence[J]. NATURAL HAZARDS,2022.
APA
Xue, Changhu,Chen, Kejie,Tang, Hui,Lin, Chaoqi,&Cui, Wenfeng.(2022).Using short-interval landslide inventories to build short-term and overall spatial prediction models for earthquake-triggered landslides based on machine learning for the 2018 Lombok earthquake sequence.NATURAL HAZARDS.
MLA
Xue, Changhu,et al."Using short-interval landslide inventories to build short-term and overall spatial prediction models for earthquake-triggered landslides based on machine learning for the 2018 Lombok earthquake sequence".NATURAL HAZARDS (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xue, Changhu]的文章
[Chen, Kejie]的文章
[Tang, Hui]的文章
百度学术
百度学术中相似的文章
[Xue, Changhu]的文章
[Chen, Kejie]的文章
[Tang, Hui]的文章
必应学术
必应学术中相似的文章
[Xue, Changhu]的文章
[Chen, Kejie]的文章
[Tang, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。