中文版 | English
题名

Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect

作者
发表日期
2022-08-10
DOI
发表期刊
ISSN
1944-8244
EISSN
1944-8252
卷号14期号:31页码:36027-36037
摘要
Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[61903177] ; Shenzhen Science and Technology Program[JCYJ20190809144013494] ; Science and Technology Program of Guangdong[2021A1515011813] ; Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]
WOS研究方向
Science & Technology - Other Topics ; Materials Science
WOS类目
Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000836332500001
出版者
EI入藏号
20223412596924
EI主题词
Brownian movement ; Incident light ; Magnetism ; Magnetite ; Propulsion ; Titanium dioxide
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2 ; Electric Motors:705.3 ; Light/Optics:741.1 ; Colloid Chemistry:801.3 ; Inorganic Compounds:804.2
Scopus记录号
2-s2.0-85135768766
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382327
专题工学院_机械与能源工程系
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Li,Jianjie,He,Xiaoli,Jiang,Huaide,et al. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect[J]. ACS Applied Materials & Interfaces,2022,14(31):36027-36037.
APA
Li,Jianjie,He,Xiaoli,Jiang,Huaide,Xing,Yi,Fu,Bi,&Hu,Chengzhi.(2022).Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect.ACS Applied Materials & Interfaces,14(31),36027-36037.
MLA
Li,Jianjie,et al."Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect".ACS Applied Materials & Interfaces 14.31(2022):36027-36037.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Jianjie]的文章
[He,Xiaoli]的文章
[Jiang,Huaide]的文章
百度学术
百度学术中相似的文章
[Li,Jianjie]的文章
[He,Xiaoli]的文章
[Jiang,Huaide]的文章
必应学术
必应学术中相似的文章
[Li,Jianjie]的文章
[He,Xiaoli]的文章
[Jiang,Huaide]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。