中文版 | English
题名

Model‐guided boosting for image denoising

作者
通讯作者Xie,Zhonghua
发表日期
2022-12-01
DOI
发表期刊
ISSN
0165-1684
EISSN
1872-7557
卷号201
摘要
Boosting algorithms have demonstrated their effectiveness in improving the restoration quality of existing image denoising methods by extracting the residual signal or removing the noise leftover iteratively. Unlike existing boosting algorithms that focus on designing an ingenious recursive step by making use of the residual signal or the noise leftover, in this paper, we propose a novel model-guided boosting framework. Specifically, we derive the recursive step from an overall restoration model constructed with the technique of Regularization by Denoising (RED) towards an interpretable, extensible and flexible boosting mechanism. By using the RED, we can apply explicit regularization equipped with powerful image denoising engine to establish the global minimization problem, making the obtained model is clearly defined and well optimized. The framework enjoys the advantage of easily extending to the case of composite denoising via superadding a regularization term. As such, we develop a simultaneous model through the joint use of deep neural network and low-rank regularization to fully utilize both external and internal image properties. The resulting restoration models are capable of being flexibly solved with fixed-point strategy and steepest-descent method, leading to two types of denoising boosters. It is shown that the proposed schemes have promise results due to the improvement in signal-to-noise ratio of input signal, and are guaranteed to converge. Experiments verify the validity of the boosters for several denoising algorithms, and show that combining the power of internal and external denoising based on our framework achieves enhancement in denoising performance.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Basic and Applied Basic Research Foundation of Guangdong Province[2019A1515111087];National Natural Science Foundation of China[62001184];
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000857056800007
出版者
EI入藏号
20223312578349
EI主题词
Image denoising ; Image enhancement ; Image reconstruction ; Iterative methods ; Restoration ; Signal to noise ratio ; Steepest descent method
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Mathematics:921 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85135792242
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382603
专题工学院_电子与电气工程系
作者单位
1.School of Computer Science and Engineering,Huizhou University,Huizhou,516007,China
2.School of Mathematics and Statistics,Huizhou University,Huizhou,516007,China
3.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Xie,Zhonghua,Liu,Lingjun,Wang,Cheng. Model‐guided boosting for image denoising[J]. SIGNAL PROCESSING,2022,201.
APA
Xie,Zhonghua,Liu,Lingjun,&Wang,Cheng.(2022).Model‐guided boosting for image denoising.SIGNAL PROCESSING,201.
MLA
Xie,Zhonghua,et al."Model‐guided boosting for image denoising".SIGNAL PROCESSING 201(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie,Zhonghua]的文章
[Liu,Lingjun]的文章
[Wang,Cheng]的文章
百度学术
百度学术中相似的文章
[Xie,Zhonghua]的文章
[Liu,Lingjun]的文章
[Wang,Cheng]的文章
必应学术
必应学术中相似的文章
[Xie,Zhonghua]的文章
[Liu,Lingjun]的文章
[Wang,Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。