中文版 | English
题名

Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets

作者
通讯作者NO,Kyoung Tai
发表日期
2022-08-01
DOI
发表期刊
ISSN
2405-8440
EISSN
2405-8440
卷号8期号:8
摘要
Dielectric constant (DC, ε) is a fundamental parameter in material sciences to measure polarizability of the system. In industrial processes, its value is an imperative indicator, which demonstrates the dielectric property of material and compiles information including separation information, chemical equilibrium, chemical reactivity analysis, and solubility modeling. Since, the available ε-prediction models are fairly primitive and frequently suffer from serious failures especially when deals with strong polar compounds. Therefore, we have developed a novel data-driven system to improve the efficiency and wide-range applicability of ε using in material sciences. This innovative scheme adopts the correlation distance and genetic algorithm to discriminate features’ combination and avoid overfitting. Herein, the prediction output of the single ML model as a coding to estimate the target value by simulating the layer-by-layer extraction in deep learning, and enabling instant search for the optimal combination of features is recruited. Our model established an improved correlation value of 0.956 with target as compared to the previously available best traditional ML result of 0.877. Our framework established a profound improvement, especially for material systems possessing ε value >50. In terms of interpretability, we have derived a conceptual computational equation from a minimum generating tree. Our innovative data-driven system is preferentially superior over other methods due to its application for the prediction of dielectric constants as well as for the prediction of overall micro and macro-properties of any multi-components complex.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:000866222700002
出版者
Scopus记录号
2-s2.0-85135915612
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382619
专题生命科学学院_生物系
生命科学学院
作者单位
1.College of Integrative Biotechnology and Translational Medicine,Yonsei University,Incheon,(21983),South Korea
2.Department of Natural and Basic Sciences,University of Turbat,Turbat,Kech, Balochistan (92600),Pakistan
3.Department of Biotechnology,College of Life Science and Biotechnology,Yonsei University,Seoul,(03722),South Korea
4.Department of Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue, (518055), Guangdong,China
推荐引用方式
GB/T 7714
Mao,Jiashun,Zeb,Amir,Kim,Min Sung,et al. Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets[J]. Heliyon,2022,8(8).
APA
Mao,Jiashun.,Zeb,Amir.,Kim,Min Sung.,Jeon,Hyeon Nae.,Wang,Jianmin.,...&NO,Kyoung Tai.(2022).Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets.Heliyon,8(8).
MLA
Mao,Jiashun,et al."Development of an innovative data-driven system to generate descriptive prediction equation of dielectric constant on small sample sets".Heliyon 8.8(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao,Jiashun]的文章
[Zeb,Amir]的文章
[Kim,Min Sung]的文章
百度学术
百度学术中相似的文章
[Mao,Jiashun]的文章
[Zeb,Amir]的文章
[Kim,Min Sung]的文章
必应学术
必应学术中相似的文章
[Mao,Jiashun]的文章
[Zeb,Amir]的文章
[Kim,Min Sung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。