题名 | A CSI 300 Index Prediction Model Based on PSO-SVR-GRNN Hybrid Method |
作者 | |
通讯作者 | Chen,Jialin |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1574-017X
|
EISSN | 1875-905X
|
卷号 | 2022 |
摘要 | In this article, a PSO-SVR-GRNN nonparametric hybrid model is proposed for the CSI 300 stock index to forecast the problem. Particle Swarm Optimization (PSO) is utilized to optimize the parameters of the SVR model to enhance the prediction ability of the support vector machine's regression model for the original CSI 300 Index time series. The optimized residual sequence prediction results of the General Regression Neural Network (GRNN) are then used to optimize the time series prediction. The outcomes indicate that the PSO- SVR-GRNN model can greatly improve the prediction accuracy of the CSI 300 Index time series compared with individual models such as PSO-SVR, GRNN, GA-SVR, LSTM, PSO-LSTM, and SVR. |
相关链接 | [Scopus记录] |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
Scopus记录号 | 2-s2.0-85136040059
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/382629 |
专题 | 商学院_金融系 |
作者单位 | 1.School of Finance,Southern University of Science and Technology,Shenzhen,Guangdong,China 2.Zhongnan University of Economics and Law,Wuhan,China |
第一作者单位 | 金融系 |
通讯作者单位 | 金融系 |
第一作者的第一单位 | 金融系 |
推荐引用方式 GB/T 7714 |
Chen,Jialin,Yang,Hanyin. A CSI 300 Index Prediction Model Based on PSO-SVR-GRNN Hybrid Method[J]. Mobile Information Systems,2022,2022.
|
APA |
Chen,Jialin,&Yang,Hanyin.(2022).A CSI 300 Index Prediction Model Based on PSO-SVR-GRNN Hybrid Method.Mobile Information Systems,2022.
|
MLA |
Chen,Jialin,et al."A CSI 300 Index Prediction Model Based on PSO-SVR-GRNN Hybrid Method".Mobile Information Systems 2022(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论