题名 | Convergence Analysis of Cloud-Aided Federated Edge Learning on Non-IID Data |
作者 | |
DOI | |
发表日期 | 2022
|
ISSN | 1948-3244
|
ISBN | 978-1-6654-9456-4
|
会议录名称 | |
卷号 | 2022-July
|
页码 | 1-5
|
会议日期 | 4-6 July 2022
|
会议地点 | Oulu, Finland
|
摘要 | Federated edge learning has attracted great attention for edge intelligent networks. Due to the limited computation and energy, mobile devices usually need to offload data to nearby edge servers. Facing this scenario, we design a cloud-aided federated edge learning (CA-FEEL) framework where the edges cooperate with the cloud to train a federated learning model. Specifically, the edges adopt the gradient descent (GD) method in parallel to update the edge parameters and the cloud averages them to update the global parameter. By theoretical analysis, we find that the covariance of non-independent and identically distributed (non-IID) data sets hinders the convergence of the GD based FL. Thus, we propose a CA-FEEL algorithm by adding a simple judgment condition. It is proved to have a theoretical guarantee of convergence for convex and smooth problems. Experiment results indicate that the proposed algorithm outperforms the standard federated learning in terms of the convergence rate and accuracy. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20223412599929
|
EI主题词 | Learning systems
|
EI分类号 | Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85136005882
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9833971 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/382632 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Wang,Sai,Gong,Yi. Convergence Analysis of Cloud-Aided Federated Edge Learning on Non-IID Data[C],2022:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论