中文版 | English
题名

PUFF: A Passive and Universal Learning-based Framework for Intra-domain Failure Detection

作者
通讯作者Li,Qing
DOI
发表日期
2021
ISSN
1097-2641
ISBN
978-1-6654-4332-6
会议录名称
卷号
2021-October
页码
1-8
会议日期
29-31 Oct. 2021
会议地点
Austin, TX, USA
摘要
The increasing amount of network devices brings significant improvement to network quality but is inevitably prone to various failures. The frequent occurrence of link failures and node failures in the real-world network, causing packet losses and delay, calls for more accurate and fast detection methods. Existing network failure detection systems focus on probes and end-to-end metrics, but are limited by overhead on bandwidth or storage. Reliance on specific deployment of monitoring systems on devices like hosts also limits the feasibility and compatibility in general network topology, ignoring the potential of transferring monitoring tasks from hosts to switches. In this paper, we propose PUFF, a passive and data-driven network failure detection system based on in-network feature collection in programmable switches and machine learning algorithms. First, PUFF explores the potential use of continuous traffic changes to detect node and link failures instead of end-to-end metrics. Second, PUFF offers a software-based prototype and compares its performance with the latest passive failure detection methods. Evaluation based on simulation on real-world topology shows that PUFF can detect nearly 90% node failures and 80% link failures with less overhead in a shorter time.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000779177500058
EI入藏号
20220911710139
EI主题词
Digital storage ; Machine learning ; Software prototyping ; Topology
EI分类号
Data Storage, Equipment and Techniques:722.1 ; Computer Programming:723.1 ; Machine Learning:723.4.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85125189310
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9679436
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382642
专题南方科技大学
作者单位
1.Tsinghua Shenzhen International Graduate School,Shenzhen,China
2.Peng Cheng Laboratory,Shenzhen,China
3.Southern University Of Science And Technology,Shenzhen,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Ye,Lianjin,Li,Qing,Zuo,Xudong,et al. PUFF: A Passive and Universal Learning-based Framework for Intra-domain Failure Detection[C],2021:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye,Lianjin]的文章
[Li,Qing]的文章
[Zuo,Xudong]的文章
百度学术
百度学术中相似的文章
[Ye,Lianjin]的文章
[Li,Qing]的文章
[Zuo,Xudong]的文章
必应学术
必应学术中相似的文章
[Ye,Lianjin]的文章
[Li,Qing]的文章
[Zuo,Xudong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。