中文版 | English
题名

MODELING WATERSHED HYDROLOGY UNDER THE INFLUENCE OF CLIMATE CHANGE AND HUMAN ACTIVITIES: NOVEL APPROACHES AND MANAGEMENT IMPLICATIONS

姓名
姓名拼音
XIONG Rui
学号
11851001
学位类型
博士
学位专业
Department of Civil and Environmental Engineering
导师
郑一
导师单位
环境科学与工程学院
外机构导师
陆萌茜
外机构导师单位
香港科技大学
论文答辩日期
2022-08-25
论文提交日期
2022-08-29
学位授予单位
香港科技大学
学位授予地点
香港
摘要

Water is the cornerstone of mankind survival. However, water shortage/scarcity has been an outstanding issue worldwide, which significantly threatens the development of human societies. In the past two decades (1997-2017), available water resources per capita has reduced by more than 20%. To keep pace with anticipated increasing population and material needs, global water use is expected to continue growing at a rate of approximately 1%/year. At present, water shortage/scarcity impacts more than 3 billion people, and this problem will be further exacerbated due to the climate-driven changes in evaporation, precipitation, and runoff. In addition, human activities also play a significant role in water shortages, which has substantially altered the Earth system since the industrial era through constructing water conservancy projects and changing land cover/land use. It has a long history that hydrological models are employed for modeling hydrological processes and water cycle. These models play an indispensable role in evaluating the influences of climate change and human activities on water resources. However, there are still some long-standing challenges, which has not been fully resolved, in water resources management. This doctoral thesis aims to address some of the challenges by three case studies, thereby providing implications for water resources management and decision making.

 

Irrigation consumes a huge amount of freshwater in water-limited agricultural regions. However, improving irrigation efficiency (IE) has a limited effect in reducing irrigation water consumption, which has been long recognized as the paradox of IE. Although long-recognized by researchers and decision makers, the paradox is rarely utilized to guide irrigation activities in the real word, which is largely due to the missing of rigorous evaluation of basin-scale IE. For example, most of the traditional IE indices don’t explicitly consider irrigation return flow and groundwater's direct contributions to crop evapotranspiration. Therefore, we proposed a new basin-scale IE index that factors in the two water flux accounts, and we holistically analyzed basin-scale IE of the Zhangye Basin (ZB), a typical agricultural area in China, based on integrated ecohydrological modeling. The major study findings in this case study are as follows: 1) About 13% of irrigation water in the ZB becomes return flow, producing a difference of 0.1 between the proposed basin-scale IE index and a traditional field-scale index. 2) Basin-scale IE has significant interannual variations, but its multiyear average shows stability, which may be related to the basin's characteristics (e.g., soil type, land cover, and hydrological processes). 3) Basin-scale IE reveals great spatial heterogeneity, which is attributed to the intensity of surface water-groundwater exchanges. 4) Under the warmer and slightly wetter climate change scenario, return flow in the ZB will increase by 3.2%/decade, leading to an increasing trend in basin-scale IE. Overall, rigorous evaluation of basin-scale IE is critical to making heterogeneous policies and developing adaptive management strategies under the changing climate. The integrated modeling approach developed in this case study provides a methodological foundation for overcoming misunderstandings about the IE paradox and benefits the reform of the current IE policy agenda.

 

The Greater Bay Area (GBA) is the largest and wealthiest region in southern China. As the current withdrawal from the Dongjiang river is perilously close to the 40% upper limit imposed to ensure a healthy and sustainable ecosystem, water scarcity becomes a crucial bottleneck to the socioeconomic development in the GBA. However, the impacts of climate change on the GBA’s water resources are still outstanding, a holistic assessment of how water resources evolve under various socioeconomic considerations is essential and pivotal for GBA’s sustainability. This case study adopted long short-term memory (LSTM), the most successful deep learning (DL) approach in hydrological modeling, to simulate the river dynamics of the three rivers (Xijiang, Beijiang, and Dongjiang river) in the GBA and projected their temporal changes under two climate change scenarios (SSP245 and SSP585). The major study findings in this case study are as follows: 1) Annual runoff of all the three rivers shows an increasing trend under approximately 90% of the model projections under both the scenarios, especially under SSP585. 2). Runoff seasonality in the Beijiang and Dongjiang river basin is projected to significantly increase under both the scenarios, while it in the Xijiang river basin remains unchanged throughout the 21st century. 3) The Beijiang river and Dongjiang river basin will be faced with new flood and drought threats triggered by climate change. 4) In the Xijiang river basin, although flood risk will increase in the future, drought risk will be alleviated, which further illustrates the strong resilience of the XRB to climate change. Overall, this case study systematically analyzes the impacts of climate change on water resources in the GBA, and provides some suggestions regarding how to reduce the vulnerability of water resources in the GBA to climate change and guarantee water security.

Excessive riverine export of nitrogen caused by human activities poses huge threats to water security in coastal areas and marine ecosystems. Given the current state of technology, long-term high-frequency monitoring of riverine nitrogen remains costly and applicable only for a small number of rivers worldwide. On the other hand, existing models, either process-based or empirical, are usually deficient in applicability beyond where they were built. A coherent view of the daily dynamics of global riverine nitrogen export is still missing. In this case study, we use LSTM-based DL approaches to model daily riverine nitrogen export in response to hydrometeorological (i.e., runoff and precipitation) and anthropogenic drivers (i.e., fertilization activities). LSTM models for the daily concentration and flux of dissolved inorganic nitrogen (DIN) were built in North River watershed, a coastal watershed in Fujian province. The major study findings in this case study are as follows: 1) The DL models performed great for both the predictions of DIN concentration and flux, with Nash-Sutcliffe efficiency coefficients (NSEs) up to 0.67 and 0.92, respectively. Under comparable data conditions, this excellent performance is unlikely to be achieved by process-based models. 2) The flux model ensemble, without retraining, performed well (mean NSE = 0.32–0.84) in seven distinct watersheds across Asia, Europe, and North America, and retraining with multi-watershed data further improved the lowest NSE from 0.32 to 0.68. 3) The multi-watershed flux model projects 0.60–12.4% increases in the nitrogen export to oceans from the studied watersheds under a 20% increase in fertilizer consumption, which rises to 6.7–20.1% with a 10% increase in runoff, indicating the synergistic effect of human activities and climate change. This case study demonstrates the great power of explainable AI in water environment modeling. It provides a potential shortcut to a consistent understanding of the global daily-resolution dynamics of riverine nitrogen export under the currently limited data conditions, which is significant for global water resources management.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-11
参考文献列表

1. Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., & Rasmussen, J. (1986). An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87(1-2), 45-59. 2. Akhavan, S., Abedi-Koupai, J., Mousavi, S. F., Afyuni, M., Eslamian, S. S., & Abbaspour, K. C. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems & Environment, 139(4), 675-688. 3. Alcamo, J., Döll, P., Kaspar, F., & Siebert, S. (1997). Global change and global scenarios of water use and availability: an application of WaterGAP 1.0. Center for Environmental Systems Research, University of Kassel, Kassel, Germany. 4. Alexander, R. B., Johnes, P. J., Boyer, E. W., & Smith, R. A. (2002). A comparison of models for estimating the riverine export of nitrogen from large watersheds. Biogeochemistry, 57(1), 295-339. 5. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109. 6. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., . . . Van Liew, M. W. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. 7. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7), e0130140. 8. Bagley, J. M. (1965). Effects of competition on efficiency of water use. Journal of the Irrigation and Drainage Division, 91(1), 69-78. 9. Barzegar, R., Aalami, M. T., & Adamowski, J. (2021). Coupling a hybrid CNN-LSTM deep learning model with a Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level forecasting. Journal of Hydrology, 598, 126196. 10. Batchelor, C., Lovell, C., & Murata, M. (1996). Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agricultural Water Management, 32(1), 37-48. 11. Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global‐scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622. 12. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.13. Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments.14. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43-69. 15. Bhowmik, N. G., & Demissie, M. (2000). Kankakee River Basin in Illinois: hydraulics, hydrology, river geometry, and sand bars interim report. ISWS Contract Report CR-2000-03. 16. Blicher-Mathiesen, G., Andersen, H. E., & Larsen, S. E. (2014). Nitrogen field balances and suction cup-measured N leaching in Danish catchments. Agriculture, Ecosystems & Environment, 196, 69-75. 17. Borgomeo, E., Hall, J. W., Fung, F., Watts, G., Colquhoun, K., & Lambert, C. (2014). Risk‐based water resources planning: Incorporating probabilistic nonstationary climate uncertainties. Water Resources Research, 50(8), 6850-6873. 18. Bowden, G. J., Dandy, G. C., & Maier, H. R. (2005). Input determination for neural network models in water resources applications. Part 1—background and methodology. Journal of Hydrology, 301(1-4), 75-92. 19. Bowden, G. J., Maier, H. R., & Dandy, G. C. (2002). Optimal division of data for neural network models in water resources applications. Water Resources Research, 38(2), 2-1-2-11. 20. Burt, C. M., Clemmens, A. J., Strelkoff, T. S., Solomon, K. H., Bliesner, R. D., Hardy, L. A., . . . Eisenhauer, D. E. (1997). Irrigation performance measures: efficiency and uniformity. Journal of Irrigation and Drainage Engineering, 123(6), 423-442. 21. Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?. Journal of Climate, 28(17), 6938-6959.22. Cao, W., Hong, H., & Yue, S. (2005). Modelling agricultural nitrogen contributions to the Jiulong River estuary and coastal water. Global and Planetary Change, 47(2-4), 111-121. 23. Cartwright, I., Currell, M. J., Cendón, D. I., & Meredith, K. T. (2020). A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. Journal of Hydrology, 580, 124247. 24. Chao, B. F., Wu, Y. H., & Li, Y. S. (2008). Impact of artificial reservoir water impoundment on global sea level. Science, 320(5873), 212-214. 25. Chen, h., Huang, J., Wu, J., & Yang, J. (2013). Discussion about several scale issues of irrigation water use efficiency. Journal of Irrigation and Drainage, 32(6), 1-6. 26. Chen, N., Hong, H., Zhang, L., & Cao, W. (2008). Nitrogen sources and exports in an agricultural watershed in Southeast China. Biogeochemistry, 87(2), 169-179. 27. Chen, N., Wu, J., & Hong, H. (2012). Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China. Science of the Total Environment, 431, 357-365. 28. Chen, Z., Nie, Z., Zhang, G., Wan, L., & Shen, J. (2006). Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeology Journal, 14(8), 1635-1651. 29. Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 591, 125286. 30. Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., & Xiao, H. (2014). Integrated study of the water–ecosystem–economy in the Heihe River Basin. National Science Review, 1(3), 413-428. 31. Cohn, T. A., Delong, L. L., Gilroy, E. J., Hirsch, R. M., & Wells, D. K. (1989). Estimating constituent loads. Water Resources Research, 25(5), 937-942. 32. Crawford, N. H., & Linsley, R. K. (1966). Digital Simulation in Hydrology'Stanford Watershed Model 4. 33. Dankers, R., Arnell, N. W., Clark, D. B., Falloon, P. D., Fekete, B. M., Gosling, S. N., . . . Satoh, Y. (2014). First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences, 111(9), 3257-3261. 34. Date, A. S., & Region, E. Total Maximum Daily Loads for Nutrients San Diego Creek and Newport Bay, California. 35. Davie, J., Falloon, P., Kahana, R., Dankers, R., Betts, R., Portmann, F., . . . Masaki, Y. (2013). Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 4(2), 359-374. 36. De Pascale, S., Dalla Costa, L., Vallone, S., Barbieri, G., & Maggio, A. (2011). Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology, 21(3), 301-308. 37. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., . . . Bauer, d. P. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. 38. Deng, X. P., Shan, L., Zhang, H., & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management, 80(1-3), 23-40. 39. Deng, X., Zhang, Q., Li, J., Sun, P., & Chen, X. (2015). Forecasting Evaluations of Water Resources under Climate Scenarios in the East River Basin. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(2), 141. 40. Dey, P., & Mishra, A. (2017). Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. Journal of Hydrology, 548, 278-290. 41. Ding, X., Shen, Z., Hong, Q., Yang, Z., Wu, X., & Liu, R. (2010). Development and test of the export coefficient model in the upper reach of the Yangtze River. Journal of Hydrology, 383(3-4), 233-244. 42. Dion, P., Martel, J. L., & Arsenault, R. (2021). Hydrological ensemble forecasting using a multi-model framework. Journal of Hydrology, 600, 126537. 43. Doherty, J., & Christensen, S. (2011). Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resources Research, 47(12). 44. Du, E., Tian, Y., Cai, X., Zheng, Y., Li, X., & Zheng, C. (2020). Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture: A tightly coupled, fully integrated modeling approach. Journal of Hydrology, 591, 125313. 45. Duan, R., Huang, G., Zhou, X., Li, Y., & Tian, C. (2021). Ensemble Drought Exposure Projection for Multifactorial Interactive Effects of Climate Change and Population Dynamics: Application to the Pearl River Basin. Earth's Future, 9(8), e2021EF002215. 46. Eagleson, P. S. (1986). The emergence of global‐scale hydrology. Water Resources Research, 22(9S), 6S-14S. 47. Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., . . . Best, N. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239-3244. 48. Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19(5), 589-606. 49. Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S. M., & Lee, S. I. (2019). Learning explainable models using attribution priors. 50. Falkenmark, M., & Widstrand, C. (1992). Population and water resources: a delicate balance. Population Bulletin, 47(3), 1-36. 51. Fang, K., Pan, M., & Shen, C. (2018). The value of SMAP for long-term soil moisture estimation with the help of deep learning. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 2221-2233. 52. Feng, D., Fang, K., & Shen, C. (2020). Enhancing streamflow forecast and extracting insights using long‐short term memory networks with data integration at continental scales. Water Resources Research, 56(9), e2019WR026793. 53. Feng, J., Ding, H., Chen, J., Yao, J., & He, J. (2008). Study on the causes resulting in groundwater level rise in Ganzhou City and its peripheral regions. Arid Zone Research, 25(4), 470-477. 54. Filoso, S., Vallino, J., Hopkinson, C., Rastetter, E., & Claessens, L. (2004). Modeling nitrogen transport in the Ipswich River Basin, Massachusetts, using a hydrological simulation program in FORTRAN (HSPF) 1. JAWRA Journal of the American Water Resources Association, 40(5), 1365-1384. 55. Fleming, S. W., Vesselinov, V. V., & Goodbody, A. G. (2021). Augmenting geophysical interpretation of data-driven operational water supply forecast modeling for a western US river using a hybrid machine learning approach. Journal of Hydrology, 597, 126327. 56. Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51-58. 57. Freeze, R. A., & Harlan, R. (1969). Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology, 9(3), 237-258. 58. Fung, F., Lopez, A., & New, M. (2011). Water availability in+ 2 C and+ 4 C worlds. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1934), 99-116. 59. Godsey, S. E., Kirchner, J. W., & Clow, D. W. (2009). Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes: An International Journal, 23(13), 1844-1864. 60. Gordon, L. J., Steffen, W., Jönsson, B. F., Folke, C., Falkenmark, M., & Johannessen, Å. (2005). Human modification of global water vapor flows from the land surface. Proceedings of the National Academy of Sciences, 102(21), 7612-7617. 61. Gosain, A., Rao, S., Srinivasan, R., & Reddy, N. G. (2005). Return‐flow assessment for irrigation command in the Palleru River basin using SWAT model. Hydrological Processes: An International Journal, 19(3), 673-682. 62. Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371-385. 63. Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., . . . & Allen, R. G. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748-750. 64. Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. 65. Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., . . . Voss, F. (2013). Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics, 4(1), 129-144. 66. Han, F., & Zheng, Y. (2018). Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach. Advances in Water Resources, 116, 77-94. 67. Han, F., Zheng, Y., Tian, Y., Li, X., Zheng, C., & Li, X. (2021). Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance. Journal of Hydrology, 595, 126045. 68. Han, H., Ma, M., Wang, X., & Ma, S. (2014). Classifying cropping area of middle Heihe River Basin in China using multitemporal Normalized Difference Vegetation Index data. Journal of Applied Remote Sensing, 8(1), 083654. 69. Hanasaki, N., Yoshikawa, S., Pokhrel, Y., & Kanae, S. (2018). A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state‐of‐the‐art global hydrological model with human activities. Water Resources Research, 54(10), 8279-8294. 70. Hansen, A. L., Refsgaard, J. C., Christensen, B. S. B., & Jensen, K. H. (2013). Importance of including small‐scale tile drain discharge in the calibration of a coupled groundwater‐surface water catchment model. Water Resources Research, 49(1), 585-603. 71. Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process: US Department of the Interior, US Geological Survey Reston, VA.72. Hashino, T., Bradley, A., & Schwartz, S. (2007). Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Sciences, 11(2), 939-950. 73. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. 74. Howell, T. A. (2003). Irrigation efficiency. Encyclopedia of Water Science, 467, 500. 75. Hsu, K. l., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network modeling of the rainfall‐runoff process. Water Resources Research, 31(10), 2517-2530. 76. Huang, Y., Huang, J., Ervinia, A., Duan, S., & Kaushal, S. S. (2021). Land use and climate variability amplifies watershed nitrogen exports in coastal China. Ocean & Coastal Management, 207, 104428. 77. IFPRI, I. (2018). Global food policy report. Washington, DC: International Food Policy Research Institute, 10, 9780896292970. 78. Date AS & Region EP. (1998). Total maximum daily loads for nutrients, San Diego Creek and Newport Bay. In: US EPA San Francisco, CA.79. Israelsen, O. W., Criddle, W. D., Fuhriman, D. K., & Hansen, V. E. (1944). Water application efficiencies in irrigation. US Department of Agriculture, Soil, Conservation Service, Research. 80. Israelsen, O. W., & Wiley, J. (1950). Irrigation principles and practices (Vol. 70): LWW.81. Jaramillo, F., & Destouni, G. (2015). Local flow regulation and irrigation raise global human water consumption and footprint. Science, 350(6265), 1248-1251. 82. Jensen, M. E. (1967). Evaluating irrigation efficiency. Journal of the Irrigation and Drainage Division, 91(1), 83–98.83. Jensen, M. E. (2007). Beyond irrigation efficiency. Irrigation Science, 25(3), 233-245. 84. Ji, X., Kang, E., Chen, R., Zhao, W., Zhang, Z., & Jin, B. (2006). The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. Environmental Geology, 50(6), 793-801. 85. Jiang, S., Zheng, Y., Babovic, V., Tian, Y., & Han, F. (2018). A computer vision-based approach to fusing spatiotemporal data for hydrological modeling. Journal of Hydrology, 567, 25-40. 86. Jiang, S., Zheng, Y., & Solomatine, D. (2020). Improving AI system awareness of geoscience knowledge: Symbiotic integration of physical approaches and deep learning. Geophysical Research Letters, 47(13), e2020GL088229. 87. Jiang, S., Zheng, Y., Wang, C., & Babovic, V. (2022). Uncovering flooding mechanisms across the contiguous United States through interpretive deep learning on representative catchments. Water Resources Research, 58(1), e2021WR030185. 88. Jørgensen, J. A. (1971). The Quaternary of Vendsyssel. Feyling-Hanssen, RW, Jørgensen, JA, Knudsen, KL & Andersen, A.-LL, 117-129. 89. Keller, A. A. (1996). Integrated water resource systems: Theory and policy implications (Vol. 3): IWMI.90. Keller, A. A., & Keller, J. (1995). Effective efficiency: A water use efficiency concept for allocating freshwater resources: Center for Economic Policy Studies, Winrock International Arlington, VA.91. Keune, J., Sulis, M., Kollet, S., Siebert, S., & Wada, Y. (2018). Human water use impacts on the strength of the continental sink for atmospheric water. Geophysical Research Letters, 45(9), 4068-4076. 92. Kim, H., Høyer, A.-S., Jakobsen, R., Thorling, L., Aamand, J., Maurya, P. K., . . . Hansen, B. (2019). 3D characterization of the subsurface redox architecture in complex geological settings. Science of the Total Environment, 693, 133583. 93. Kim, H., Sandersen, P. B., Jakobsen, R., Kallesøe, A. J., Claes, N., Blicher-Mathiesen, G., . . . Hansen, B. (2021). A 3D hydrogeochemistry model of nitrate transport and fate in a glacial sediment catchment: A first step toward a numerical model. Science of the total Environment, 776, 146041. 94. Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., & Klambauer, G. (2019). NeuralHydrology–interpreting LSTMs in hydrology. In Explainable AI: Interpreting, explaining and visualizing deep learning (pp. 347-362): Springer.95. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005-6022. 96. Kronvang, B., Iversen, H. L., Vejrup, K., Mogensen, B. B., Hansen, A.-M., & Hansen, L. B. (2003). Pesticides in streams and subsurface drainage water within two arable catchments in Denmark: Pesticide application, concentration, transport and fate: Danish Environmental Protection Agency Copenhagen.97. Kug, J. S., Oh, J. H., An, S. I., Yeh, S. W., Min, S. K., Son, S. W., . . . Shin, J. (2022). Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 12(1), 47-53. 98. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86. 99. Leavesley, G., Lichty, R., Troutman, B., & Saindon, L. (1983). Precipitation-runoff modeling system: User’s manual. Water-resources Investigations Report, 83, 4238. 100. Leavesley, G. H. (1984). Precipitation-runoff modeling system: User's manual (Vol. 83): US Department of the Interior.101. Li, G. (2008). An encyclopedia of architecture and civil engineering of China: hydraulic engineering (in Chinese): China Architecture and Building Press.102. Li, X., Cheng, G., Ge, Y., Li, H., Han, F., Hu, X., . . . Nian, Y. (2018). Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. Journal of Geophysical Research: Atmospheres, 123(2), 890-914. 103. Li, X., Zheng, Y., Sun, Z., Tian, Y., Zheng, C., Liu, J., . . . Xu, Z. (2017). An integrated ecohydrological modeling approach to exploring the dynamic interaction between groundwater and phreatophytes. Ecological Modelling, 356, 127-140. 104. Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415-14428. 105. Liang, Z., Zou, R., Chen, X., Ren, T., Su, H., & Liu, Y. (2020). Simulate the forecast capacity of a complicated water quality model using the long short-term memory approach. Journal of Hydrology, 581, 124432. 106. Liu, C., Lin, S., Jiao, X., Shen, X., & Li, R. (2019). Problems and treatment countermeasures of water environment in Guangdong-Hong Kong-Macao greater Bay area. Beijing Da Xue Xue Bao, 55(6), 1085-1096. 107. Liu, L., Jiang, T., Xu, H., & Wang, Y. (2018). Potential threats from variations of hydrological parameters to the Yellow River and Pearl River basins in China over the next 30 years. Water, 10(7), 883. 108. Liu, S., Shi, H., Niu, J., Chen, J., & Kuang, X. (2020). Assessing future socioeconomic drought events under a changing climate over the Pearl River basin in South China. Journal of Hydrology: Regional Studies, 30, 100700. 109. Liu, W., Bailey, R. T., Andersen, H. E., Jeppesen, E., Park, S., Thodsen, H., . . . Trolle, D. (2020a). Assessing the impacts of groundwater abstractions on flow regime and stream biota: Combining SWAT-MODFLOW with flow-biota empirical models. Science of the Total Environment, 706, 135702. 110. Liu, W., Park, S., Bailey, R. T., Molina-Navarro, E., Andersen, H. E., Thodsen, H., . . . Jensen, J. B. (2020b). Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environmental Sciences Europe, 32(1), 1-25. 111. Lowe, J. A., Huntingford, C., Raper, S., Jones, C., Liddicoat, S., & Gohar, L. (2009). How difficult is it to recover from dangerous levels of global warming?. Environmental Research Letters, 4(1), 014012. 112. Lu, S., Andersen, H. E., Thodsen, H., Rubæk, G. H., & Trolle, D. (2016). Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments. Agricultural Water Management, 175, 78-90. 113. Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J., & Jensen, K. H. (2018). Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency. Hydrology and Earth System Sciences, 22(7), 3601-3617. 114. Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.115. Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., . . . Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67. 116. Ma, Y., Montzka, C., Bayat, B., & Kollet, S. (2021). Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe. Hydrology and Earth System Sciences, 25(6), 3555-3575. 117. Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101-124. 118. Maraun, D. (2013). Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. Journal of Climate, 26(6), 2137-2143.119. Marek, G., Gowda, P., Marek, T., Porter, D., Baumhardt, R., & Brauer, D. K. (2017). Modeling long-term water use of irrigated cropping rotations in the Texas High Plains using SWAT. Irrigation Science, 35(2), 111-123. 120. Markham, C. G. (1970). Seasonality of precipitation in the United States. Annals of the Association of American Geographers, 60(3), 593-597. 121. Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., & Barlow, P. M. (2008). GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geological Survey Techniques and Methods, 6, 240. 122. McCallum, J. L., Engdahl, N. B., Ginn, T. R., & Cook, P. G. (2014). Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time? Water Resources Research, 50(3), 2022-2038. 123. Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401-415. 124. Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347-350. 125. Moatar, F., Abbott, B. W., Minaudo, C., Curie, F., & Pinay, G. (2017). Elemental properties, hydrology, and biology interact to shape concentration‐discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research, 53(2), 1270-1287. 126. Mohan, S., Simhadrirao, B., & Arumugam, N. (1996). Comparative study of effective rainfall estimation methods for lowland rice. Water Resources Management, 10(1), 35-44. 127. Molden, D. (1997). Accounting for water use and productivity. IWMI Books, Reports. 128. Montanari, A., & Koutsoyiannis, D. (2012). A blueprint for process‐based modeling of uncertain hydrological systems. Water Resources Research, 48(9). 129. Mulvaney, T. J. (1851). On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Proceedings of the Institution of Civil Engineers of Ireland, 4, 19-31. 130. Musolff, A., Fleckenstein, J., Rao, P., & Jawitz, J. (2017). Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments. Geophysical Research Letters, 44(9), 4143-4151. 131. Newman, B. D., Wilcox, B. P., Archer, S. R., Breshears, D. D., Dahm, C. N., Duffy, C. J., . . . Vivoni, E. R. (2006). Ecohydrology of water‐limited environments: A scientific vision. Water Resources Research, 42(6). 132. Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. 133. Orth, R. (2021). Global soil moisture data derived through machine learning trained with in-situ measurements. Scientific Data, 8(1), 1-14. 134. Özelkan, E. C., & Duckstein, L. (2001). Fuzzy conceptual rainfall–runoff models. Journal of Hydrology, 253(1-4), 41-68. 135. Patwardhan, A. S., Nieber, J. L., & Johns, E. L. (1990). Effective rainfall estimation methods. Journal of Irrigation and Drainage Engineering, 116(2), 182-193. 136. Peng, H., Cheng, G., Xu, Z., Yin, Y., & Xu, W. (2007). Social, economic, and ecological impacts of the “Grain for Green” project in China: A preliminary case in Zhangye, Northwest China. Journal of Environmental Management, 85(3), 774-784. 137. Peter, D., & Geoff, K. (2001). Estimating productivity of water at different spatial scales using simulation modeling (Vol. 53). IWMI.138. Peter, D., & Wim, B. (2002). Irrigation performance using hydrological and remote sensing modeling. Journal of Irrigation and Drainage Engineering, 128(1), 11-18. 139. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., . . . Schellnhuber, H. J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2). 140. Roth, A. E. (1988). The Shapley value: essays in honor of Lloyd S. Shapley: Cambridge University Press.141. Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. 142. Runkel, R. L., Crawford, C. G., & Cohn, T. A. (2004). Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers, Techniques and Methods. US Geological Survey, 69. 143. Rydberg, T., & Haden, A. C. (2006). Emergy evaluations of Denmark and Danish agriculture: Assessing the influence of changing resource availability on the organization of agriculture and society. Agriculture, Ecosystems & Environment, 117(2-3), 145-158. 144. Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (2019). Explainable AI: interpreting, explaining and visualizing deep learning (Vol. 11700): Springer Nature.145. Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., . . . Colón-González, F. J. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245-3250. 146. Schilling, K., Wolter, C., Christiansen, D., & Schnoebelen, D. (2008a). Raccoon River, Iowa: Total maximum daily load for nitrate and Escherichia coli. Iowa Department of Natural Resources, Iowa City, IA. 147. Schilling, K., Wolter, C., Christiansen, D., Schnoebelen, D., & Jha, M. (2008b). Water quality improvement plan for Raccoon River, Iowa. TMDL Report. Watershed Improvement Section, Iowa Department of Natural Resources. 148. Scott, C. A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F., & Varela-Ortega, C. (2014). Irrigation efficiency and water-policy implications for river basin resilience. Hydrology and Earth System Sciences, 18(4), 1339-1348. 149. Scott, P. (2017). Global panel on agriculture and food systems for nutrition: food systems and diets: facing the challenges of the 21st century: Springer.150. Copernicus Climate Change Service (C3S). (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 15(2), 2020. 151. Shah, D., Shah, H. L., Dave, H. M., & Mishra, V. (2021). Contrasting influence of human activities on agricultural and hydrological droughts in India. Science of The Total Environment, 774, 144959. 152. Shah, S., Vervoort, R., Suweis, S., Guswa, A., Rinaldo, A., & Van der Zee, S. (2011). Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater. Water Resources Research, 47(9). 153. Shamseldin, A. Y. (1997). Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, 199(3-4), 272-294. 154. Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research, 54(11), 8558-8593. 155. Shi, X., Yu, D., Warner, E., Pan, X., Petersen, G., Gong, Z., & Weindorf, D. (2004). Soil database of 1: 1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Survey Horizons, 45(4), 129-136. 156. Shortridge, J. E., & Zaitchik, B. F. (2018). Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections. Climatic Change, 151(3), 525-539. 157. Sidle, W., Roose, D., & Shanklin, D. (2000). Isotopic Evidence for Naturally Occurring Sulfate Pollution of Ponds in the Kankakee River Basin, Illinois‐Indiana (Vol. 29, No. 5, pp. 1594-1603). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 158. Smirnov, O., Zhang, M., Xiao, T., Orbell, J., Lobben, A., & Gordon, J. (2016). The relative importance of climate change and population growth for exposure to future extreme droughts. Climatic Change, 138(1), 41-53. 159. Smith, R. A., Schwarz, G. E., & Alexander, R. B. (1997). Regional interpretation of water‐quality monitoring data. Water Resources Research, 33(12), 2781-2798. 160. Solomon, K. H., & Davidoff, B. (1999). Relating unit and sub-unit irrigation performance. Transactions of the ASAE, 42(1), p.115-122. 161. Song, C., Yao, L., Hua, C., & Ni, Q. (2021). A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory. Journal of Hydrology, 603, 126879. 162. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015a). The trajectory of the Anthropocene: the great acceleration. The Anthropocene Review, 2(1), 81-98. 163. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., . . . De Wit, C. A. (2015b). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. 164. Steffen, W., Sanderson, R. A., Tyson, P. D., Jäger, J., Matson, P. A., Moore III, B., . . . Turner, B. L. (2006). Global change and the earth system: a planet under pressure: Springer Science & Business Media.165. Subramanian, M. (2019). Anthropocene now: influential panel votes to recognize Earth's new epoch. Nature. 166. Sun, Z., Zheng, Y., Li, X., Tian, Y., Han, F., Zhong, Y., . . . Zheng, C. (2018). The Nexus of water, ecosystems, and agriculture in Endorheic River Basins: a system analysis based on integrated ecohydrological modeling. Water Resources Research, 54(10), 7534-7556. 167. Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In International conference on machine learning (pp. 3319-3328). PMLR.168. Tada, A., & Tanakamaru, H. (2021). Unbiased estimates and confidence intervals for riverine loads. Water Resources Research, 57(3), e2020WR028170. 169. Taner, M. Ü., Ray, P., & Brown, C. (2019). Incorporating multidimensional probabilistic information into robustness‐based water systems planning. Water Resources Research, 55(5), 3659-3679. 170. Than, N. H., Ly, C. D., & Van Tat, P. (2021). The performance of classification and forecasting Dong Nai River water quality for sustainable water resources management using neural network techniques. Journal of Hydrology, 596, 126099. 171. Thrasher, B., Maurer, E. P., McKellar, C., & Duffy, P. B. (2012). Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrology and Earth System Sciences, 16(9), 3309-3314.172. Tian, Y., Zheng, Y., Han, F., Zheng, C., & Li, X. (2018). A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environmental Modelling & Software, 108, 154-173. 173. Tian, Y., Zheng, Y., Wu, B., Wu, X., Liu, J., & Zheng, C. (2015). Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environmental Modelling & Software, 63, 170-184. 174. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264. 175. Todini, E. (1996). The ARNO rainfall—runoff model. Journal of Hydrology, 175(1-4), 339-382. 176. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. 177. Tosaki, Y., Tase, N., Sasa, K., Takahashi, T., & Nagashima, Y. (2011). Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater, 49(6), 891-902. 178. United Nations, Department of Economic and Social Affairs, Population Division. (2019). World population prospects 2019, online edition. rev. 1. United Nations.179. Van Beek, L., & Bierkens, M. (2009). The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification. Utrecht University, Utrecht, The Netherlands, 1, 25-26. 180. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., . . . Lamarque, J. F. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5-31. 181. Vandaele, R., Dance, S. L., & Ojha, V. (2021). Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning. Hydrology and Earth System Sciences, 25(8), 4435-4453. 182. Veldkamp, T., Wada, Y., Aerts, J., Döll, P., Gosling, S. N., Liu, J., . . . Pokhrel, Y. (2017). Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 8(1), 1-12. 183. Vörösmarty, C. J., Moore III, B., Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., . . . Steudler, P. A. (1989). Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochemical Cycles, 3(3), 241-265. 184. Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., . . . Lepisto, A. (2002). A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences, 6(3), 559-582. 185. Wallace, J. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems & Environment, 82(1-3), 105-119. 186. Wang, W., Yu, Z., Zhang, W., Shao, Q., Zhang, Y., Luo, Y., . . . Xu, J. (2014). Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections. Agricultural Water Management, 146, 249-261. 187. Wang, Z., Zhong, R., Lai, C., Zeng, Z., Lian, Y., & Bai, X. (2018). Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agricultural and Forest Meteorology, 249, 149-162. 188. Wen, X., Wu, Y., Su, J., Zhang, Y., & Liu, F. J. (2005). Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environmental Geology, 48(6), 665-675. 189. Wheeler, S., Zuo, A., & Bjornlund, H. (2013). Farmers’ climate change beliefs and adaptation strategies for a water scarce future in Australia. Global Environmental Change, 23(2), 537-547. 190. Willard, J. D., Read, J. S., Appling, A. P., Oliver, S. K., Jia, X., & Kumar, V. (2021). Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta‐Transfer Learning. Water Resources Research, 57(7), e2021WR029579. 191. Willardson, L., & Allen, R. G. (1998). Definitive basin water management. Paper presented at the 14th Technical Conference on Irrigation, Drainage and Flood Control, USCID (JI Burns and SS Anderson (ed)).192. Wood, A. W., & Schaake, J. C. (2008). Correcting errors in streamflow forecast ensemble mean and spread. Journal of Hydrometeorology, 9(1), 132-148. 193. Wu, B., Zheng, Y., Tian, Y., Wu, X., Yao, Y., Han, F., . . . Zheng, C. J. (2014). Systematic assessment of the uncertainty in integrated surface water‐groundwater modeling based on the probabilistic collocation method. Water Resources Research, 50(7), 5848-5865. 194. Wu, D., Cui, Y., Wang, Y., Chen, M., Luo, Y., & Zhang, L. (2019). Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model. Agricultural Water Management, 213, 280-288. 195. Wu, P., Wood, R., Ridley, J., & Lowe, J. (2010). Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophysical Research Letters, 37(12). 196. Wu, P., Zhao, X., Gu, T., Jiang, T., Wang, X., & Feng, Y. (2021). Water resources in the Guangdong-Hong Kong-Macao Greater Bay Area and its co-evolution trend with social economy: A comparative study with the international bay area. Geology in China, 48(5), 1357-1367. 197. WWAP, U. (2020). The United Nations world water development report 2020: Water and climate change. In: WWAP (United Nations World Water Assessment Programme) Paris.198. Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water Resources Research, 56(1), e2019WR025326. 199. Xiong, Z., & Yan, X. (2013). Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region. Chinese Science Bulletin, 58(36), 4670-4678. 200. Xu, X., Huang, G., Qu, Z., & Pereira, L. S. (2010). Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agricultural Water Management, 98(2), 301-313. 201. Xu, Y. S., Zhang, D. X., Shen, S. L., & Chen, L. Z. (2009). Geo-hazards with characteristics and prevention measures along the coastal regions of China. Natural Hazards, 49(3), 479-500. 202. Yan, D., Werners, S. E., Ludwig, F., & Huang, H. Q. (2015). Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Journal of Hydrology: Regional Studies, 4, 228-245. 203. Yang, Y., & Chui, T. F. M. (2020). Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrology and Earth System Sciences, 25(11), 5839-5858. 204. Yu, D., Yan, W., Chen, N., Peng, B., Hong, H., & Zhuo, G. (2015). Modeling increased riverine nitrogen export: source tracking and integrated watershed-coast management. Marine Pollution Bulletin, 101(2), 642-652. 205. Zhang, A., Liu, W., Yin, Z., Fu, G., & Zheng, C. (2016). How will climate change affect the water availability in the Heihe River Basin, Northwest China?. Journal of Hydrometeorology, 17(5), 1517-1542. 206. Zhang, W., & Zhang, X. (2007). A forecast analysis on fertilizers consumption worldwide. Environmental Monitoring and Assessment, 133(1), 427-434. 207. Zhao, R. J. (1992). The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. 208. Zhao, J., Guo, Z., He, X., Xu, T., Liu, S., & Xu, Z. (2019). Uncertainty Assessment of Temperature and Precipitation Reanalysis Data in Heihe River Basin. Journal of Arid Meteorology, 37(4), 529-539. 209. Zhen, G., Bensheng, H., Jing, Q., Chao, T., Da, L., Hongxiang, J., & Zhilin, Z. (2020). Research on the water security issues and suggestions in Guangdong-Hong Kong-Macao Greater Bay Area. China Water Resources, 893(11), 22-25. 210. Zheng, Y., & Han, F. (2016). Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stochastic Environmental Research and Risk Assessment, 30(1), 293-308. 211. Zheng, Y., Tian, Y., Du, E., Han, F., Wu, Y., Zheng, C., & Li, X. (2020). Addressing the water conflict between agriculture and ecosystems under environmental flow regulation: An integrated modeling study. Environmental Modelling & Software, 134, 104874. 212. Zhi, W., Feng, D., Tsai, W.-P., Sterle, G., Harpold, A., Shen, C., & Li, L. (2021). From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology, 55(4), 2357-2368. 213. Zhou, Y. (2020). Real-time probabilistic forecasting of river water quality under data missing situation: Deep learning plus post-processing techniques. Journal of Hydrology, 589, 125164. 214. Zou, S., Ruan, H., Lu, Z., Yang, D., Xiong, Z., & Yin, Z. (2016). Runoff simulation in the upper Reaches of Heihe River Basin Based on the RIEMS–SWAT model. Water, 8(10), 455.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/382664
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Xiong R. MODELING WATERSHED HYDROLOGY UNDER THE INFLUENCE OF CLIMATE CHANGE AND HUMAN ACTIVITIES: NOVEL APPROACHES AND MANAGEMENT IMPLICATIONS[D]. 香港. 香港科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11851001-熊睿-环境科学与工程学(5726KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[熊睿]的文章
百度学术
百度学术中相似的文章
[熊睿]的文章
必应学术
必应学术中相似的文章
[熊睿]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。