中文版 | English
题名

Advanced Electrocatalysts for Nitrate Reduction Reaction

姓名
姓名拼音
WANG Jing
学号
11851012
学位类型
博士
学位专业
Chemical and Biomolecular Engineering
导师
谷猛
导师单位
材料科学与工程系
外机构导师
邵敏华
外机构导师单位
香港科技大学
论文答辩日期
2022-08-12
论文提交日期
2022-08-31
学位授予单位
香港科技大学
学位授予地点
香港
摘要

Electrochemical nitrate reduction (NO3RR) has become an appealing approach for sustainable NH3 synthesis owing to the “waste-to-wealth” conversion, mild operating conditions, and zero-carbon emission. However, the complicated eight-electron transfer process involving multiple N-containing species with various chemical states seriously drags the reaction rate. Furthermore, the competition from hydrogen evolution reaction (HER) makes it difficult to achieve a high Faradaic efficiency (FE). Although some noble metals have shown good activity for this reaction, the scarce resource and high cost limit their practical application. Electrocatalysts with high NO3RR activity and FE, and low cost are urgently demanded.

In this thesis, efforts are devoted to developing non-noble metal-based catalysts for selective NH3 synthesis under ambient conditions. In the first work, surface modulation is adopted to suppress the competing HER by constructing CoOx nanosheets enriched with adsorbed oxygen. The CoOx nanosheets show excellent catalytic performance with the maximum ammonia yield of 82.4 mg h-1 mgcat-1 and a FE of 93.4% at -0.3 V in an alkaline electrolyte. Density functional theory (DFT) calculations reveal that the high FE is correlated with the adsorbed oxygen, which could suppress HER by strengthening hydrogen adsorption and offer a more exothermic reaction pathway. In the second work, Cu-doped Fe3O4 is successfully constructed as a non-noble metal-doped catalyst for NO3RR. The maximum FE of ~ 100% and a high NH3 yield of 179.6 mg h-1 mgcat-1at -0.6 V are found, which are superior to Fe3O4 and Cu-Fe3O4 with different Cu contents. In situ Raman spectroscopy verifies the formation of NH3 on the Cu-Fe3O4. In the third work, single-atom catalysts (SACs) are developed to maximize the metal utilization and lower the cost of catalysts. The Co SAC with a high Co content achieves the highest NH3 yield of 60.08 mg h-1 mgcat-1 at -0.6 V and a maximum FE of 91.74% at -0.3 V. The NO3RR performance of Co SAC is superior to that of Cu SAC and Ni SAC. At last, BiFeO3 is also successfully synthesized and evaluated as a catalyst for NO3RR. The catalyst attains a FE of 96.85% and an NH3 yield of 90.45 mg h-1 mgcat-1 at -0.6V. During the nitrate reduction reaction, the crystalline BiFeO3 rapidly converts into an amorphous phase, which is stable in the long-term reaction.

This study develops several non-noble metal-based catalysts with excellent NO3RR performance by surface modulation, heteroatom doping, and constructing single atom catalysts, which pave the way for the rational design and mechanism study of future electrocatalysts.

 

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-11
参考文献列表

(1) Giddey, S.; Badwal, S. P. S.; Kulkarni, A., International Journal of Hydrogen Energy 2013, 38, 14576-14594.
(2) Li, X.; Li, L.; Ren, X.; Wu, D.; Zhang, Y.; Ma, H.; Sun, X.; Du, B.; Wei, Q.; Li, B., Industrial & Engineering Chemistry Research 2018, 57, 16622-16627.
(3) Kong, Y.; Li, Y.; Sang, X.; Yang, B.; Li, Z.; Zheng, S.; Zhang, Q.; Yao, S.; Yang, X.; Lei, L.; Zhou, S.; Wu, G.; Hou, Y., Advanced Materials 2022, 34, e2103548.
(4) Zheng, J.; Jiang, L.; Lyu, Y.; Jiang, S. P.; Wang, S., Energy & Environmental Materials 2021, 5, 452-457.
(5) Lv, X. W.; Weng, C. C.; Yuan, Z. Y., ChemSusChem 2020, 13, 3061-3078.(6) Yao, Y.; Wang, J.; Shahid, U. B.; Gu, M.; Wang, H.; Li, H.; Shao, M., Electrochemical Energy Reviews 2020, 3, 239-270.
(7) Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F., Nature Catalysis 2018, 1, 490-500.
(8) Tang, C.; Qiao, S. Z., Chemical Society Reviews 2019, 48, 3166-3180.
(9) Lipman, T.; Shah, N., Ammonis as Analternative Energy Stroage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report; Transportation Sustainability Research Center, UC Berkeley: 2007.
(10) Saika, T.; Nakamura, M.; Nohara T.; Ishimatsu S., JSME International Journal Series B Fluids and Thermal Engineering 2006, 49, 78-83.
(11) Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y., ACS Catalysis 2018, 8, 7517-7525.
(12) Hao, D.; Chen, Z.; Figiela, M.; Stepniak, I.; Wei, W.; Ni, B. J., Journal of Materials Science & Technology 2021, 77, 163-168.
(13) Smil, V., Scientific American 1997, 277, 76-81.
(14) Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm, P.; Schneider, W. F.; Schrock, R. R., Science 2018, 360, eaar6611.
(15) Zhao, R.; Xie, H.; Chang, L.; Zhang, X.; Zhu, X.; Tong, X.; Wang, T.; Luo, Y.; Wei, P.; Wang, Z.; Sun, X., EnergyChem 2019, 1, 100011.
(16) Zhu, H.; Ren, X.; Yang, X.; Liang, X.; Liu, A.; Wu, G., SusMat 2022, 2, 214-242.
(17) Zhang, J.; Guo, R.; Fu, J.; Yin, S.; Shen, P.; Zhang, X., Journal of Electrochemistry. 2022, 28, 2106161.
(18) Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B., Advanced Materials 2017, 29, 1604799.
(19) Statistical abstract of the united states: 2011. https://www.census.gov/library/publications/2010/compendia/statab/130ed.html (accessed 2022.08.23).
(20) Appl, M., Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA, 2011; Vol. 3, pp 139-210.
(21) Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M., Catalysis Today 2017, 286, 2-13.
(22) Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H., Nature Chemistry 2012, 4, 934-940.
(23) Suryanto, B. H. R.; Du, H. L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Nature Catalysis 2019, 2, 290-296.
(24) Minteer, S. D.; Christopher, P.; Linic, S., ACS Energy Letters 2018, 4, 163-166.
(25) Wu, T.; Han, M.; Zhu, X.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H., Journal of Materials Chemistry A 2019, 7, 16969-16978.
(26) Montoya, J. H.; Tsai, C.; Vojvodic, A.; Norskov, J. K., ChemSusChem 2015, 8, 2180-2186.
(27) Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A., Energy 2005, 30, 2487-2504.
(28) Chisalita, D. A.; Petrescu, L.; Cormos, C. C., Renewable and Sustainable Energy Reviews 2020, 130, 109964.
(29) Liu, Y.; Su, Y.; Quan, X.; Fan, X.; Chen, S.; Yu, H.; Zhao, H.; Zhang, Y.; Zhao, J., ACS Catalysis 2018, 8, 1186-1191.
(30) Ren, Y.; Yu, C.; Tan, X.; Han, X.; Huang, H.; Huang, H.; Qiu, J., Small Methods 2019, 3, 1900474.
(31) Wu, T.; Kong, W.; Zhang, Y.; Xing, Z.; Zhao, J.; Wang, T.; Shi, X.; Luo, Y.; Sun, X., Small Methods 2019, 3, 1900356.
(32) Yan, Y.; Qu, H.; Zheng, X.; Zhao, K.; Li, X.; Yao, Y.; Liu, Y., Chinese Chemical Letters 2022, 33, 4655-4658.
(33) Guo, C.; Ran, J.; Vasileff, A.; Qiao, S. Z., Energy & Environmental Science 2018, 11, 45-56.
(34) Zheng, J.; Mao, S., Applied Geochemistry 2019, 107, 58-79.
(35) Battino, R.; Rettich, T. R.; Tominaga, T., Journal of Physical and Chemical Reference Data 1984, 13, 563-600.
(36) Emerson, S.; Stump, C.; Wilbur, D.; Quay P., Marine Chemistry 1999, 64, 337-347.
(37) Weiss, R. F., Deep Sea Research and Oceanographic Abstracts 1970, 17, 721-735.
(38) Li, J.; Wei, F.; Dong, C.; Wang, Z.; Xiu, Z.; Han, X., Materials Today Energy 2021, 21, 100766.
(39) Xu, T.; Ma, B.; Liang, J.; Yue, L.; Liu, Q.; Li, T.; Zhao, H.; Luo, Y.; Lu, S.; Sun, X., Acta Physico Chimica Sinica 2022, 37, 2009043.
(40) Guo, D.; Wang, S.; Xu, J.; Zheng, W.; Wang, D., Journal of Energy Chemistry 2022, 65, 448-468.
(41) Lee, C.; Yan, Q., Current Opinion in Electrochemistry 2021, 29, 100808.(42) Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A. W. M.; Xu, L.; Shi, Y.; Du, Y.; Hao, W.; Wong, P. K.; Wang, J.; Dou, S. X.; Zhang, L.; Yu, J. C., Journal of the American Chemical Society 2020, 142, 7036-7046.
(43) Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T., ACS Catalysis 2017, 7, 3713-3720.
(44) Chen, M.; Bi, J.; Huang, X.; Wang, T.; Wang, Z.; Hao, H., Chemosphere 2021, 278, 130386.
(45) Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P., Applied Catalysis B: Environmental 2018, 236, 546-568.
(46) Martínez, J.; Ortiz, A.; Ortiz, I., Applied Catalysis B: Environmental 2017, 207, 42-59.
(47) Bhatnagar, A.; Sillanpää, M., Chemical Engineering Journal 2011, 168, 493-504.
(48) Gao, Z.; Zhang, Y.; Li, D.; Werth, C. J.; Zhang, Y.; Zhou, X., Journal of Hazardous Materials 2015, 286, 425-31.
(49) Rosca, V.; Duca, M.; Groot, M. T.; Koper, M. T. M., Chemical Reviews 2009, 109, 2209-2244.
(50) Chen, M.; Wang, H.; Zhao, Y.; Luo, W.; Li, L.; Bian, Z.; Wang, L.; Jiang, W.; Yang, J., Nanoscale 2018, 10, 19023-19030.
(51) Nitrate and Nitrite in Drinking Water: WHO Guidelines for Drinking Water Quality; World Health Organization 2011.
(52) Figueiredo, M. C.; Solla-Gullón, J.; Vidal-Iglesias, F. J.; Climent, V.; Feliu, J. M., Catalysis Today 2013, 202, 2-11.
(53) Ahn, J. H.; Choo, K. H.; Park, H. S., Journal of Membrane Science 2008, 310, 296-302.
(54) Leaković, S.; Mijatovic, I.; Cerjan-Stefanović, Š.; Hodžić, E., Water Resaerch 2000, 34, 185-190.
(55) Midaoui, E. A.; Elhannouni, F.; Taky, M.; Chay, L.; Sahli, M. A. M.; Echihabi., L.; Hafsi, M., Separation and Purification Technology 2002, 29, 235-244.
(56) Park, J. Y.; Yoo, Y. J., Applied Microbiology and Biotechnology 2009, 82, 415-429.
(57) Li, P.; Jin, Z.; Fang, Z.; Yu, G., Energy & Environmental Science 2021, 14, 3522-3531.
(58) Dortsiou, M.; Kyriacou, G., Journal of Electroanalytical Chemistry 2009, 630, 69-74.
(59) Katsounaros, I.; Ipsakis, D.; Polatides, C.; Kyriacou, G., Electrochimica Acta 2006, 52, 1329-1338.
(60) Wan, X.; Guo, W.; Dong, X.; Wu, H.; Sun, X.; Chu, M.; Han, S.; Zhai, J.; Xia, W.; Jia, S.; He, M.; Han, B., Green Chemistry 2022, 24, 1090-1095.
(61) Lu, J.; Liu, X.; Zhang, H.; Fu, M.; Zheng, H.; Chen, Q.; Zhou, J., Chemical Engineering Journal 2022, 433, 134586.
(62) Zeng, Y.; Priest, C.; Wang, G.; Wu, G., Small Methods 2020, 4, 2000672.(63) Estudillo-Wong, L. A.; Arce-Estrada, E. M.; Alonso-Vante, N.; Manzo-Robledo, A., Catalysis Today 2011, 166, 201-204.
(64) Dima, G. E.; Beltramo, G. L.; Koper, M. T. M., Electrochimica Acta 2005, 50, 4318-4326.
(65) Yang, J.; Sebastian, P.; Duca, M.; Hoogenboom, T.; Koper, M. T., Chemical Communications 2014, 50, 2148-2151.
(66) Kamai, R.; Nakanishi, S.; Hashimoto, K.; Kamiya, K., Journal of Electroanalytical Chemistry 2017, 800, 54-59.
(67) Duca, M.; Sacré, N.; Wang, A.; Garbarino, S.; Guay, D., Applied Catalysis B: Environmental 2018, 221, 86-96.
(68) Liu, J.; Cheng, T.; Jiang, L.; Kong, A.; Shan, Y., ACS Applied Materials & Interfaces 2020, 12, 33186-33195.
(69) Wang, Z.; Ortiz, E. M.; Goldsmith, B. R.; Singh, N., Catalysis Science & Technology 2021, 11, 7098-7109.
(70) Wang, Z.; Young, S. D.; Goldsmith, B. R.; Singh, N., Journal of Catalysis 2021, 395, 143-154.
(71) Dima, G. E.; De Vooys, A. C. A.; Koper, M. T. M., Journal of Electroanalytical Chemistry 2003, 554, 15-23.
(72) Chen, T.; Li, H.; Ma, H.; Koper, M. T. M., Langmuir 2015, 31, 3277-3281.(73) Tucker, P. M.; Waite, M. J.; Hayden, B. E., Journal of Applied Electrochemistry 2004, 34, 781-796.
(74) Casella, I. G.; Contursi, M., Electrochimica Acta 2014, 138, 447-453.
(75) Leontiev, A. P.; Brylev, O. A.; Napolskii, K. S., Electrochimica Acta 2015, 155, 466-473.
(76) Brylev, O.; Sarrazin, M.; Roué, L.; Bélanger, D., Electrochimica Acta 2007, 52, 6237-6247.
(77) Guo, Y.; Cai, X.; Shen, S.; Wang, G.; Zhang, J., Journal of Catalysis 2021, 402, 1-9.
(78) Yao, Y.; Zhu, S.; Wang, H.; Li, H.; Shao, M., Angewandte Chemie 2020, 59, 10479-10483.
(79) Duca, M.; Van Der Klugt, B.; Hasnat, M. A.; Machida, M.; Koper, M. T. M., Journal of Catalysis 2010, 275, 61-69.
(80) Jiang, M.; Tao, A.; Hu, Y.; Wang, L.; Zhang, K.; Song, X.; Yan, W.; Tie, Z.; Jin, Z., ACS Applied Materials & Interfaces 2022, 14, 17470-17478.
(81) Lim, J.; Liu, C. Y.; Park, J.; Liu, Y. H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C., ACS Catalysis 2021, 11, 7568-7577.
(82) Zhu, J. Y.; Xue, Q.; Xue, Y. Y.; Ding, Y.; Li, F. M.; Jin, P.; Chen, P.; Chen, Y., ACS Applied Materials & Interfaces 2020, 12, 14064-14070.
(83) Du, F.; Li, J.; Wang, C.; Yao, J.; Tan, Z.; Yao, Z.; Li, C.; Guo, C., Chemical Engineering Journal 2022, 434, 134641.
(84) Zheng, W.; Zhu, L.; Yan, Z.; Lin, Z.; Lei, Z.; Zhang, Y.; Xu, H.; Dang, Z.; Wei, C.; Feng, C., Environmental Science & Technology 2021, 55, 13231-13243.
(85) Shen, J.; Xiang, K.; Lan, D.; Miu, Z.; Fang, Z.; Wang, J.; Xiao, G.; Xiao, H., International Journal of Electrochemical Science 2020, 15, 7175-7186.
(86) Huo, S.; Yang, S.; Niu, Q.; Yang, F.; Song, L., International Journal of Hydrogen Energy 2020, 45, 4015-4025.(87) Sanjuán, I.; García-Cruz, L.; Solla-Gullón, J.; Expósito, E.; Montiel, V., Electrochimica Acta 2020, 340, 135914.(88) He, W.; Zhang, J.; Dieckhofer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W., Nature Communications 2022, 13, 1129.(89) Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M., Electrochimica Acta 2017, 227, 77-84.(90) Fu, X.; Zhao, X.; Hu, X.; He, K.; Yu, Y.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R.; Kang, Y., Applied Materials Today 2020, 19, 100620.(91) Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B., Angewandte Chemie 2020, 59, 5350-5354.(92) Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; Ding, Y.; Wu, J.; Lum, Y.; Dinh, C. T.; Sinton, D.; Zheng, G.; Sargent, E. H., Journal of the American Chemical Society 2020, 142, 5702-5708.(93) Chen, G. F.; Yuan, Y.; Jiang, H.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T.; Lu, J.; Wang, H., Nature Energy 2020, 5, 605-613.(94) Li, W.; Xiao, C.; Zhao, Y.; Zhao, Q.; Fan, R.; Xue, J., Catalysis Letters 2016, 146, 2585-2595.(95) Su, L.; Li, K.; Zhang, H.; Fan, M.; Ying, D.; Sun, T.; Wang, Y.; Jia, J., Water research 2017, 120, 1-11.(96) Ma, X.; Li, M.; Liu, X.; Wang, L.; Chen, N.; Li, J.; Feng, C., Chemical Engineering Journal 2018, 348, 171-179.(97) Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Zhang, Y.; Oturan, N.; Oturan, M. A., Applied Catalysis B: Environmental 2019, 254, 391-402.(98) Kim, D. E.; Pak, D., Chemosphere 2019, 228, 611-618.(99) Chauhan, R.; Srivastava, V. C., Chemical Engineering Journal 2020, 386, 122065.(100) Deng, X.; Yang, Y.; Wang, L.; Fu, X. Z.; Luo, J. L., Advanced Science 2021, 8, 2004523.(101) McEnaney, J. M.; Blair, S. J.; Nielander, A. C.; Schwalbe, J. A.; Koshy, D. M.; Cargnello, M.; Jaramillo, T. F., ACS Sustainable Chemistry & Engineering 2020, 8, 2672-2681.(102) Fu, W.; Du, X.; Su, P.; Zhang, Q.; Zhou, M., ACS Applied Materials & Interfaces 2021, 13, 28348-28358.(103) Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Bi, X., Chemical Engineering Journal 2020, 382, 123034.(104) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; Tang, B.; Liu, Y.; Gao, S.; Alshehri, A. A.; Shakir, I.; Agboola, P. O.; Kong, Q.; Wang, Q.; Ma, D.; Sun, X., Small 2022, 18, e2106961.(105) Gao, J.; Shi, N.; Guo, X.; Li, Y.; Bi, X.; Qi, Y.; Guan, J.; Jiang, B., Environmental Science & Technology 2021, 55, 10684-10694.(106) Kuang, P.; Natsui, K.; Einaga, Y., Chemosphere 2018, 210, 524-530.(107) Li, Y.; Xiao, S.; Li, X.; Chang, C.; Xie, M.; Xu, J.; Yang, Z., Materials Today Physics 2021, 19, 100431.(108) Zhao, J.; Shang, B.; Zhai, J., Nanomaterials 2021, 11, 2418.(109) Liu, J. X.; Richards, D.; Singh, N.; Goldsmith, B. R., ACS Catalysis 2019, 9, 7052-7064.(110) Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y., Advanced Functional Materials 2020, 31, 2008533.(111) Wu, J.; Li, J. H.; Yu, Y. X., The Journal of Physical Chemistry Letters 2021, 12, 3968-3975.(112) Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F. Y.; Kim, J. Y. T.; Xia, Y.; Heck, K.; Hu, Y.; Wong, M. S.; Li, Q.; Gates, I.; Siahrostami, S.; Wang, H., Nature Communications 2021, 12, 2870.(113) Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C., Small 2020, 16, e2004526.(114) Hasnat, M. A.; Karim, M. R.; Machida, M., Catalysis Communications 2009, 10, 1975-1979.(115) Jia, R.; Wang, Y.; Wang, C.; Ling, Y.; Yu, Y.; Zhang, B., ACS Catalysis 2020, 10, 3533-3540.(116) Wei, P.; Liang, J.; Liu, Q.; Xie, L.; Tong, X.; Ren, Y.; Li, T.; Luo, Y.; Li, N.; Tang, B.; Asiri, A. M.; Hamdy, M. S.; Kong, Q.; Wang, Z.; Sun, X., Journal of Colloid and Interface Science 2022, 615, 636-642.(117) Zhao, X.; Zhu, Z.; He, Y.; Zhang, H.; Zhou, X.; Hu, W.; Li, M.; Zhang, S.; Dong, Y.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Wågberg, T.; Hu, G., Chemical Engineering Journal 2022, 433, 133190.(118) Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S., Nano Energy 2022, 97, 107124.(119) Zhao, X.; Li, X.; Zhang, H.; Chen, X.; Xu, J.; Yang, J.; Zhang, H.; Hu, G., Journal of Hazardous Materials 2022, 424, 127319.(120) Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Ruscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; Liu, Z.; Wang, W.; Cuenya, B. R.; Luo, J., Angewandte Chemie 2022, e202202556.(121) Gong, Z.; Zhong, W.; He, Z.; Liu, Q.; Chen, H.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y., Applied Catalysis B: Environmental 2022, 305, 121021.(122) Chen, L. F.; Xie, A. Y.; Lou, Y. Y.; Tian, N.; Zhou, Z. Y.; Sun, S. G., Journal of Electroanalytical Chemistry 2022, 907, 116022.(123) Wang, Q.; Lei, Y.; Wang, D.; Li, Y., Energy & Environmental Science 2019, 12, 1730-1750.(124) Le Duff, C. S.; Lawrence, M. J.; Rodriguez, P., Angewandte Chemie 2017, 129, 13099-13104.(125) Yang, P.; Zhao, Z. J.; Chang, X.; Mu, R.; Zha, S.; Zhang, G.; Gong, J., Angewandte Chemie 2018, 57, 7724-7728.(126) Hsieh, Y. C.; Senanayake, S. D.; Zhang, Y.; Xu, W.; Polyansky, D. E., ACS Catalysis 2015, 5, 5349-5356.(127) Zhao, M.; Tang, H.; Yang, Q.; Gu, Y.; Zhu, H.; Yan, S.; Zou, Z., ACS Applied Materials & Interfaces 2020, 12, 4565-4571.(128) Varela, A. S.; Ju, W.; Reier, T.; Strasser, P., ACS Catalysis 2016, 6, 2136-2144.(129) Kresse, G.; Furthmüller, J., Physical Review B 1996, 54, 11169-11186.(130) Perdew, J. P.; Burke, K.; Ernzerhof, M., Physical Review Letters 1996, 77, 3865-3868.(131) Blöchl, P. E., Physical Review B 1994, 50, 17953-17979.(132) Pang, X. Y.; Liu, C.; Li, D. C.; Lv, C. Q.; Wang , G. C., ChemPhysChem 2013, 14, 204-212.(133) Grimme, S.; Ehrlich, S.; Goerigk, L., Journal of Computational Chemistry 2011, 32, 1456-1465.(134) Haynes, W. M., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. 97 ed.; CRC Press: Boca Raton, FL, 2017.(135) Cai, C.; Wang, M.; Han, S.; Wang, Q.; Zhang, Q.; Zhu, Y.; Yang, X.; Wu, D.; Zu, X.; Sterbinsky, G. E.; Feng, Z.; Gu, M., ACS Catalysis 2020, 11, 123-130.(136) Wang, Z.; Liu, H.; Ge, R.; Ren, X.; Ren, J.; Yang, D.; Zhang, L.; Sun, X., ACS Catalysis 2018, 8, 2236-2241.(137) Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L., Angewandte Chemie 2016, 55, 5277-5281.(138) Babu, D. D.; Huang, Y.; Anandhababu, G.; Wang, X.; Si, R.; Wu, M.; Li, Q.; Wang, Y.; Yao, J., Journal of Materials Chemistry A 2019, 7, 8376-8383.(139) Andersen, S. Z.; Colic, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A.; Statt, M. J.; Blair, S. J.; Mezzavilla, S.; Kibsgaard, J.; Vesborg, P. C. K.; Cargnello, M.; Bent, S. F.; Jaramillo, T. F.; Stephens, I. E. L.; Norskov, J. K.; Chorkendorff, I., Nature 2019, 570, 504-508.(140) Hu, B.; Hu, M.; Seefeldt, L.; Liu, T. L., ACS Energy Letters 2019, 4, 1053-1054.(141) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., Journal of The Electrochemical Society 2005, 152, J23.(142) Wan, Y.; Xu, J.; Lv, R., Materials Today 2019, 27, 69-90.(143) Xiao, W.; Liu, P.; Zhang, J.; Song, W.; Feng, Y. P.; Gao, D.; Ding, J., Advanced Energy Materials 2017, 7, 1602086.(144) Huang, J.; Sun, Y.; Zhang, Y.; Zou, G.; Yan, C.; Cong, S.; Lei, T.; Dai, X.; Guo, J.; Lu, R.; Li, Y.; Xiong, J., Advanced Materials 2018, 30, 1705045.(145) Liu, H.; Cao, X.; Ding, L. X.; Wang, H., Advanced Functional Materials 2022, 32, 2111161.(146) Cui, H.; Guo, Y.; Guo, L.; Wang, L.; Zhou, Z.; Peng, Z., Journal of Materials Chemistry A 2018, 6, 18782-18793.(147) Ni, W.; Xue, Y.; Zang, X.; Li, C.; Wang, H.; Yang, Z.; Yan, Y. M., ACS Nano 2020, 14, 2014-2023.(148) Yang, H.; Wu, Y.; Lin, Q.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C.; Lin, Z., Angewandte Chemie 2018, 57, 15476-15480.(149) Wang, F.; Mao, J., Diamond and Related Materials 2021, 118, 108494.(150) Chu, K.; Liu, Y.; Li, Y.; Guo, Y.; Tian, Y.; Zhang, H., Applied Catalysis B: Environmental 2020, 264, 118525.(151) Huang, L.; Li, W.; Zeng, M.; He, G.; Shearing, P. R.; Parkin, I. P.; Brett, D. J. L., Composites Part B: Engineering 2021, 220, 108986.(152) Yang, L.; Li, J.; Du, F.; Gao, J.; Liu, H.; Huang, S.; Zhang, H.; Li, C.; Guo, C., Electrochimica Acta 2022, 411, 140095.(153) Wilson, D.; Langell, M. A., Applied Surface Science 2014, 303, 6-13.(154) Fan, T.; Pan, D.; Zhang, H., Industrial & Engineering Chemistry Research 2011, 50, 9009-9018.(155) Chen, C.; Ren, H.; Zhou, J.; Luo, Y.; Zhan, Y.; Au, C.; Lin, X.; Jiang, L., International Journal of Hydrogen Energy 2020, 45, 8456-8465.(156) Poulin, S.; Frangca, R.; Moreau-Be´langer L.; Sacher, E., The Journal of Physical Chemistry C 2010, 114, 10711-10718.(157) Reddy, I. N.; Reddy, C. V.; Sreedhar, A.; Cho, M.; Kim, D.; Shim, J., Journal of Electroanalytical Chemistry 2019, 842, 146-160.(158) Zhang, S.; Zhao, C.; Liu, Y.; Li, W.; Wang, J.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H., Chemical Communications 2019, 55, 2952-2955.(159) Musick, J.; Popp, J.; Kiefer, W., Journal of Raman Spectroscopy 2000, 31, 217-219.(160) Wang, C.; Ye, F.; Shen, J.; Xue, K. H.; Zhu, Y.; Li, C., ACS Applied Materials & Interfaces 2022, 14, 6680-6688.(161) Carey, D. M.; Korenowski, G. M., The Journal of Chemical Physics 1998, 108, 2669-2675.(162) Lei, F.; Li, K.; Yang, M.; Yu, J.; Xu, M.; Zhang, Y.; Xie, J.; Hao, P.; Cui, G.; Tang, B., Inorganic Chemistry Frontiers 2022, 9, 2734-2740.(163) Edwards, H.G.M.; Lewis, I. R.; Webb, N., Journal of Molecular Structure 1993, 301, 73-80.(164) Bae, S.; Stewart, K. L.; Gewirth A. A., Journal of the American Chemical Society 2007, 129, 10171-10180.(165) Zhang, Z.; Liu, J.; Wang, J.; Wang, Q.; Wang, Y.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z.; Lim, J.; Zhao, T.; Ciucci, F., Nature Communications 2021, 12, 5235.(166) Gao, J.; Yang, H.; Huang, X.; Hung, S.; Cai, W.; Jia, C.; Miao, S.; Chen, H. M.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B., Chem 2020, 6, 658-674.(167) Li, J.; Banis, M. N.; Ren, Z.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F.; Sham, T. K.; Li, R.; Luo, J.; Sun, X., Small 2021, 17, e2007245.(168) Shang, Y.; Duan, X.; Wang, S.; Yue, Q.; Gao, B.; Xu, X., Chinese Chemical Letters 2022, 33, 663-673.(169) Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Accounts of Chemical Research 2013, 46, 174-1748.(170) Liu, L.; Corma, A., Chemical Reviews 2018, 118, 4981-5079.(171) Zhang, H.; Liu, G.; Shi, L.; Ye, J., Advanced Energy Materials 2018, 8, 1701343.(172) Zhang, Q.; Guan, J., Advanced Functional Materials 2020, 30, 2000768.(173) Su, J.; Zhuang, L.; Zhang, S.; Liu, Q.; Zhang, L.; Hu, G., Chinese Chemical Letters 2021, 32, 2947-2962.(174) Zhang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H.; Wang, Y.; Xu, P.; An, S.; Zhang, Q.; Liu, L.; Du, S.; Han, X.; Wang, D.; Li, Y., Angewandte Chemie 2021, 60, 6170-6176.(175) Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y., Chemical Reviews 2020, 120, 11900-11955.(176) Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Joule 2018, 2, 1242-1264.(177) Li, M.; Wang, H.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J., Advanced Materials 2020, 32, e2001848.(178) Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W., Angewandte Chemie 2018, 57, 12303-12307.(179) Zhang, C.; Wang, Z.; Lei, J.; Ma, L.; Yakobson, B. I.; Tour, J. M., Small 2022, 18, e2106327.(180) Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S.; Li, Y.; Wei, Z.; Pan, X.; Wang, J.; Amine, K.; Shao, M., Nano Energy 2019, 61, 60-68.(181) Zhou, L.; Zhou, P.; Zhang, Y.; Liu, B.; Gao, P.; Guo, S., Journal of Energy Chemistry 2021, 55, 355-360.(182) Cai, Z.; Du, P.; Liang, W.; Zhang, H.; Wu, P.; Cai, C.; Yan, Z., Journal of Materials Chemistry A 2020, 8, 15012-15022.(183) Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X.; Yaghi, O. M.; Behm, R. J., Journal of the American Chemical Society 2019, 141, 5201-5210.(184) Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y., Angewandte Chemie 2016, 55, 10800-10805.(185) Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J., Advanced Materials 2018, 30, 1803498.(186) Yang, X.; Wang, S.; Yu, D. Y. W.; Rogach, A. L., Nano Energy 2019, 58, 392-398.(187) Zhao, Q.; Wang, Y.; Lai, W.-H.; Xiao, F.; Lyu, Y.; Liao, C.; Shao, M., Energy & Environmental Science 2021, 14, 5444-5456.(188) Xiong, Y.; Sun, W.; Han, Y.; Xin, P.; Zheng, X.; Yan, W.; Dong, J.; Zhang, J.; Wang, D.; Li, Y., Nano Research 2021, 14, 2418-2423.(189) Mi, X.; Wang, P.; Xu, S.; Su, L.; Zhong, H.; Wang, H.; Li, Y.; Zhan, S., Angewandte Chemie 2021, 60, 4588-4593.(190) Wang, Y.; Shao, M., ACS Catalysis 2022, 12, 5407-5415.(191) Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W.; Liu, D. P.; Jiang, Z.; Luo, M.; Gu, L.; Zhang, Q. H.; Cao, X. Z.; Yao, Y.; Shao, M. H.; Zhang, Y.; Zhang, X. B.; Chen, J. G.; Yan, J. M.; Jiang, Q., Angewandte Chemie 2019, 58, 9464-9469.(192) Li, L.; Tang, C.; Xia, B.; Jin, H.; Zheng, Y.; Qiao, S. Z., ACS Catalysis 2019, 9, 2902-2908.(193) Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K., Nature Materials 2006, 5, 909-913.(194) Zeng, G.; He, Y.; Ma, D. D.; Luo, S.; Zhou, S.; Cao, C.; Li, X.; Wu, X. T.; Liao, H. G.; Zhu, Q. L., Advanced Functional Materials 2022, 32, 2201125.(195) Yang, X.; Ma, Y.; Liu, Y.; Wang, K.; Wang, Y.; Liu, M.; Qiu, X.; Li, W.; Li, J., ACS Applied Materials & Interfaces 2021, 13, 19864-19872.(196) Wu, D.; Feng, R.; Xu, C.; Sui, P. F.; Zhang, J.; Fu, X. Z.; Luo, J. L., Nano-Micro Letters 2021, 14, 38.(197) Mohan, R., Nature Chemistry 2010, 2, 336.(198) Odularu, A. T., Journal of Chemistry 2020, 9802934.(199) Sanchez-Calvo, A.; Blanco-Lopez, M. C.; Costa-Garcia, A., Biosensors 2020, 10, 52.(200) Ying, H.; Bi, J.; Xu, H.; Wu, G.; Wu, X.; Hao, J.; Li, Z., ACS Sustainable Chemistry & Engineering 2022, 10, 6766-6774.(201) Utomo, W. P.; Leung, M. K. H.; Yin, Z.; Wu, H.; Ng, Y. H., Advanced Functional Materials 2021, 32, 2106713.(202) Deng, P.; Wang, H.; Qi, R.; Zhu, J.; Chen, S.; Yang, F.; Zhou, L.; Qi, K.; Liu, H.; Xia, B. Y., ACS Catalysis 2019, 10, 743-750.(203) Ávila-Bolívar, B.; Cepitis, R.; Alam, M.; Assafrei, J. M.; Ping, K.; Aruväli, J.; Kikas, A.; Kisand, V.; Vlassov, S.; Käärik, M.; Leis, J.; Ivaništštev, V.; Starkov, P.; Montiel, V.; Solla-Gullón, J.; Kongi, N., Journal of CO2 Utilization 2022, 59, 101937.(204) Lin, C.; Liu, Y.; Kong, X.; Geng, Z.; Zeng, J., Nano Research 2022, https://doi.org/10.1007/s12274-022-4345-z.(205) Liu, Q.; Lin, Y.; Yue, L.; Liang, J.; Zhang, L.; Li, T.; Luo, Y.; Liu, M.; You, J.; Alshehri, A. A.; Kong, Q.; Sun, X., Nano Research 2022, 15, 5032-5037.(206) Xing, Z.; Kong, W.; Wu, T.; Xie, H.; Wang, T.; Luo, Y.; Shi, X.; Asiri, A. M.; Zhang, Y.; Sun, X., ACS Sustainable Chemistry & Engineering 2019, 7, 12692-12696.(207) Liu, Y.; Huang, L.; Fang, Y.; Zhu, X.; Dong, S., Nano Research 2021, 14, 2711-2716.(208) Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J.; Li, Y.; Li, Y., Nature Communications 2018, 9, 1320.(209) Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J., Advanced Energy Materials 2018, 8, 1801536.(210) Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A., Advanced Functional Materials 2019, 30, 1906478.(211) Gao, T.; Chen, Z.; Zhu, Y.; Niu, F.; Huang, Q.; Qin, L.; Sun, X.; Huang, Y., Materials Research Bulletin 2014, 59, 6-12.(212) Mocherla, P. S. V.; Karthik, C.; Ubic, R.; Ramachandra Rao, M. S.; Sudakar, C., Applied Physics Letters 2013, 103, 022910.(213) Sun, Y.; Wang, H.; Xing, Q.; Cui, W.; Li, J.; Wu, S.; Sun, L., Chinese Journal of Catalysis 2019, 40, 647-655.(214) Huo, W. C.; Dong, X. a.; Li, J. Y.; Liu, M.; Liu, X. Y.; Zhang, Y. X.; Dong, F., Chemical Engineering Journal 2019, 361, 129-138.(215) Xu, Q.; Cheng, S.; Hao, X.; Wang, Z.; Ma, N.; Du, P., Applied Physics A 2017, 123, 289.(216) Zhang, H.; Liu, F.; Ding P.; Zhong W.; Zhou, C., Acta Physica Sinica 2010, 59, 2078-2084.(217) Quan, Z.; Hu, H.; Xu, S.; Liu, W.; Fang, G.; Li, M.; Zhao, X., Journal of Sol-Gel Science and Technology 2008, 48, 261-266.(218) Liang, M.; Yang, Z.; Yang, Y.; Mei, Y.; Zhou, H.; Yang, S., Journal of Materials Science: Materials in Electronics 2018, 30, 1310-1321.(219) Cave, L.; Al, T.; Loomer, D.; Cogswell, S.; Weaver, L., Micron 2006, 37, 301-309.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/387481
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Wang J. Advanced Electrocatalysts for Nitrate Reduction Reaction[D]. 香港. 香港科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11851012-王菁 -材料科学与工程(6104KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王菁]的文章
百度学术
百度学术中相似的文章
[王菁]的文章
必应学术
必应学术中相似的文章
[王菁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。