中文版 | English
题名

A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming

作者
通讯作者Xu, Shengjie
发表日期
2022-08-01
DOI
发表期刊
ISSN
1598-5865
EISSN
1865-2085
卷号69期号:1页码:1015-1035
摘要
Most recently, a balanced augmented Lagrangian method (ALM) has been proposed by He and Yuan for the canonical convex minimization problem with linear constraints, which advances the original ALM by balancing its subproblems, improving its implementation and enlarging its applicable range. In this paper, we propose a dual-primal version of the newly developed balanced ALM, which updates the new iterate via a conversely dual-primal iterative order formally. The new algorithm inherits all advantages of the prototype balanced ALM, and it can be extended to more general separable convex programming problems with both linear equality and inequality constraints. The convergence analysis of the proposed method can be well conducted in the context of variational inequalities. In particular, by some application problems, we numerically validate that these balanced ALM type methods can outperform existing algorithms of the same kind significantly.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Mathematics
WOS记录号
WOS:000842873300002
出版者
EI入藏号
20223512641178
EI主题词
Constrained optimization ; Iterative methods ; Lagrange multipliers ; Software prototyping ; Variational techniques
EI分类号
Computer Programming:723.1 ; Calculus:921.2 ; Numerical Methods:921.6 ; Systems Science:961
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/394164
专题理学院_数学系
作者单位
1.Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
第一作者单位数学系
通讯作者单位数学系
推荐引用方式
GB/T 7714
Xu, Shengjie. A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming[J]. Journal of Applied Mathematics and Computing,2022,69(1):1015-1035.
APA
Xu, Shengjie.(2022).A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming.Journal of Applied Mathematics and Computing,69(1),1015-1035.
MLA
Xu, Shengjie."A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming".Journal of Applied Mathematics and Computing 69.1(2022):1015-1035.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Shengjie]的文章
百度学术
百度学术中相似的文章
[Xu, Shengjie]的文章
必应学术
必应学术中相似的文章
[Xu, Shengjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。