题名 | A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming |
作者 | |
通讯作者 | Xu, Shengjie |
发表日期 | 2022-08-01
|
DOI | |
发表期刊 | |
ISSN | 1598-5865
|
EISSN | 1865-2085
|
卷号 | 69期号:1页码:1015-1035 |
摘要 | Most recently, a balanced augmented Lagrangian method (ALM) has been proposed by He and Yuan for the canonical convex minimization problem with linear constraints, which advances the original ALM by balancing its subproblems, improving its implementation and enlarging its applicable range. In this paper, we propose a dual-primal version of the newly developed balanced ALM, which updates the new iterate via a conversely dual-primal iterative order formally. The new algorithm inherits all advantages of the prototype balanced ALM, and it can be extended to more general separable convex programming problems with both linear equality and inequality constraints. The convergence analysis of the proposed method can be well conducted in the context of variational inequalities. In particular, by some application problems, we numerically validate that these balanced ALM type methods can outperform existing algorithms of the same kind significantly. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
; Mathematics
|
WOS记录号 | WOS:000842873300002
|
出版者 | |
EI入藏号 | 20223512641178
|
EI主题词 | Constrained optimization
; Iterative methods
; Lagrange multipliers
; Software prototyping
; Variational techniques
|
EI分类号 | Computer Programming:723.1
; Calculus:921.2
; Numerical Methods:921.6
; Systems Science:961
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/394164 |
专题 | 理学院_数学系 |
作者单位 | 1.Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China 2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Xu, Shengjie. A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming[J]. Journal of Applied Mathematics and Computing,2022,69(1):1015-1035.
|
APA |
Xu, Shengjie.(2022).A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming.Journal of Applied Mathematics and Computing,69(1),1015-1035.
|
MLA |
Xu, Shengjie."A dual-primal balanced augmented Lagrangian method for linearly constrained convex programming".Journal of Applied Mathematics and Computing 69.1(2022):1015-1035.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Shengjie]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Shengjie]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Shengjie]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论