中文版 | English
题名

Improving Material Property Prediction by Leveraging the Large- Scale Computational Database and Deep Learning

作者
通讯作者Yang, Yuedong; Lu, Yutong
发表日期
2022-08-01
DOI
发表期刊
ISSN
1932-7447
EISSN
1932-7455
摘要
Predicting physical and chemical properties of materials based on structures is critical for bottom-up material design. Many property prediction models and material training databases have been proposed, but accurately predicting properties is still challenging. Here, we report a package of "Matgen + CrystalNet " approach to improve material property prediction. We construct a large-scale material genome database (Matgen) containing 76k materials collected from an experimentally observed database and compute their properties through the density functional theory method with the Perdew-Burke- Ernzerhof (PBE) functional. Our database achieves the same computation accuracy by comparing part of our results with those from the open Material Project and Open Quantum Materials Database, all with PBE computations, and contains more diverse chemical species and big-sized structures. Based on the computed properties of our comprehensive data set, we have developed a new graph neural network (GNN) model, namely, CrystalNet, by strengthening the message passing between atoms and bonds to mimic physical and chemical interactions. The model is shown to outperform other GNN prediction models. The proof-of-concept applications, such as fine-tuning data on experimental values to improve prediction accuracy and bandgap prediction on hypothetical materials, showcase the usability and potential capacity of our package of "database + model " to improve material design.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2020YFB0204803] ; Program for Guang-dong Introducing Innovative and Entrepreneurial Teams[2016ZT06D211] ; Guangdong Province Key Area RD Program[2019B010940001] ; Guangdong Introductive Inno-vative and Entrepreneurial Team Project[2017ZT07C062] ; Shenzhen Municipal Key-Lab program[ZDSYS20190902092905285] ; Guangdong Provincial Key-Lab program[2019B030301001]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000843591200001
出版者
EI入藏号
20223512668386
EI主题词
Computation theory ; Database systems ; Deep learning ; Density functional theory ; Graph neural networks ; Message passing ; Neural network models
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Database Systems:723.3 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/394200
专题工学院_材料科学与工程系
量子科学与工程研究院
作者单位
1.Sun Yat sen Univ, Natl Supercomp Ctr Guangzhou, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
2.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
5.Southern Univ Sci & Technol, Shenzhen Key Lab Adv Quantum Funct Mat & Devices, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Chen, Pin,Chen, Jianwen,Yan, Hui,et al. Improving Material Property Prediction by Leveraging the Large- Scale Computational Database and Deep Learning[J]. Journal of Physical Chemistry C,2022.
APA
Chen, Pin.,Chen, Jianwen.,Yan, Hui.,Mo, Qing.,Xu, Zexin.,...&Lu, Yutong.(2022).Improving Material Property Prediction by Leveraging the Large- Scale Computational Database and Deep Learning.Journal of Physical Chemistry C.
MLA
Chen, Pin,et al."Improving Material Property Prediction by Leveraging the Large- Scale Computational Database and Deep Learning".Journal of Physical Chemistry C (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Pin]的文章
[Chen, Jianwen]的文章
[Yan, Hui]的文章
百度学术
百度学术中相似的文章
[Chen, Pin]的文章
[Chen, Jianwen]的文章
[Yan, Hui]的文章
必应学术
必应学术中相似的文章
[Chen, Pin]的文章
[Chen, Jianwen]的文章
[Yan, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。