中文版 | English
题名

Cosmos Propagation Network: Deep learning model for point cloud completion

作者
通讯作者Lin, Fangzhou; Yamada, Kazunori D.
发表日期
2022-10-01
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号507页码:221-234
摘要
Point clouds measured by 3D scanning devices often have partially missing data due to the view positioning of the scanner. The missing data can reduce the performance of a point cloud in downstream tasks such as segmentation, location, and pose estimation. Consequently, 3D point cloud completion aims to predict the missing regions of incomplete objects for these fundamental 3D vision tasks. However, predicting the complete object can easily diminish the detail or structure of a measured region, which usually does not require repair. This study proposes a novel neural network architecture, Cosmos Propagation Network (CP-Net), for 3D point cloud completion. CP-Net extracts latent features in different scales from incomplete point clouds used as input. For point cloud generation, we propose a novel point expand method using a Mirror Expand module. Compared with existing methods, our Mirror Expand module introduces less information redundancy, which makes the distribution of points more reliable. CP-Net predicts the details of missing regions and maintains a clear general structure. The performance of CP-Net on several benchmarks was compared to that of current baseline methods. Compared to the existing methods, CP-Net showed the best performance for various metrics. Thus, CP-Net is expected to help address various problems related to 3D point cloud completion. Its source code is available at https://github.com/ark1234/CP-Net.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NSF[CCF-2006738]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000843489800004
出版者
EI入藏号
20223512647809
EI主题词
Backpropagation ; Benchmarking ; Deep neural networks ; Network architecture
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Optical Devices and Systems:741.3
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/394233
专题工学院_计算机科学与工程系
作者单位
1.Tohoku Univ, Grad Sch Informat Sci, Dept Appl Informat Sci, Sendai, Miyagi 9808579, Japan
2.Hokkaido Univ, Fac Informat Sci & Technol, Dept Syst Sci & Informat, Sapporo, Hokkaido 0600814, Japan
3.Worcester Polytech Inst, ECE Dept & Data Sci & Robot Engn, Worcester, MA 01609 USA
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Lin, Fangzhou,Xu, Yajun,Zhang, Ziming,et al. Cosmos Propagation Network: Deep learning model for point cloud completion[J]. NEUROCOMPUTING,2022,507:221-234.
APA
Lin, Fangzhou,Xu, Yajun,Zhang, Ziming,Gao, Chenyang,&Yamada, Kazunori D..(2022).Cosmos Propagation Network: Deep learning model for point cloud completion.NEUROCOMPUTING,507,221-234.
MLA
Lin, Fangzhou,et al."Cosmos Propagation Network: Deep learning model for point cloud completion".NEUROCOMPUTING 507(2022):221-234.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin, Fangzhou]的文章
[Xu, Yajun]的文章
[Zhang, Ziming]的文章
百度学术
百度学术中相似的文章
[Lin, Fangzhou]的文章
[Xu, Yajun]的文章
[Zhang, Ziming]的文章
必应学术
必应学术中相似的文章
[Lin, Fangzhou]的文章
[Xu, Yajun]的文章
[Zhang, Ziming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。