题名 | Fifth-order A-WENO schemes based on the path-conservative central-upwind method |
作者 | |
通讯作者 | Na,Mingye |
发表日期 | 2022-11-15
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 469 |
摘要 | We develop fifth-order A-WENO finite-difference schemes based on the path-conservative central-upwind method for nonconservative one- and two-dimensional hyperbolic systems of nonlinear PDEs. The main challenges in development of accurate and robust numerical methods for the studied systems come from the presence of nonconservative products. Semi-discrete second-order finite-volume path-conservative central-upwind (PCCU) schemes recently proposed in Castro Díaz et al. (2019) [8] provide one with a reliable Riemann-problem-solver-free numerical method for nonconservative hyperbolic system. In this paper, we extend the PCCU schemes to the fifth-order of accuracy in the framework of A-WENO finite-difference schemes. We apply the developed schemes to the two-layer shallow water equations. We ensure that the developed schemes are well-balanced in the sense that they are capable of exactly preserving “lake-at-rest” steady states. We illustrate the performance of the new fifth-order schemes on a number of one- and two-dimensional examples, where one can clearly see that the proposed fifth-order schemes clearly outperform their second-order counterparts. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[11771201];National Natural Science Foundation of China[12111530004];National Natural Science Foundation of China[12171226];Guangdong Provincial Key Laboratory Of Computational Science And Material Design[2019B030301001];
|
EI入藏号 | 20223512627816
|
EI主题词 | Equations of motion
; Finite difference method
|
EI分类号 | Calculus:921.2
; Numerical Methods:921.6
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85136313887
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/394996 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mathematics,SUSTech International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Chu,Shaoshuai,Kurganov,Alexander,Na,Mingye. Fifth-order A-WENO schemes based on the path-conservative central-upwind method[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2022,469.
|
APA |
Chu,Shaoshuai,Kurganov,Alexander,&Na,Mingye.(2022).Fifth-order A-WENO schemes based on the path-conservative central-upwind method.JOURNAL OF COMPUTATIONAL PHYSICS,469.
|
MLA |
Chu,Shaoshuai,et al."Fifth-order A-WENO schemes based on the path-conservative central-upwind method".JOURNAL OF COMPUTATIONAL PHYSICS 469(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论