中文版 | English
题名

Distributed evolution strategies for large-scale optimization

作者
通讯作者Shi,Yuhui
DOI
发表日期
2022-07-09
会议名称
Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
395-398
会议日期
JUL 09-13, 2022
会议地点
null,Boston,MA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
As their underlying models are becoming larger and data-driven, an increasing number of modern real-world applications can be mathematically formulated as large-scale continuous optimization. In this paper, we propose a distributed evolution strategy (DES) for large-scale black-box optimization (specifically with memory-costly function evaluations), running on the mainstream clustering computing platform. In order to amortize the memory cost, DES utilizes the distributed shared memory to support parallelism of function evaluations. For better fitting into the scalable computing architecture of interest, DES adopts the well-known island model to distribute one low-rank version of covariance matrix adaptation (CMA), because the quadratic complexity of the standard CMA is not well scalable. For a proper trade-off between exploration and exploitation, DES needs to, on-the-fly, adjust strategy parameters at two time-scale levels. Experiments show its efficiency on most of test functions chosen.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141235597]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001035469400119
EI入藏号
20223312576635
EI主题词
Covariance matrix ; Economic and social effects ; Evolutionary algorithms ; Memory architecture ; Optimization
EI分类号
Computer Systems and Equipment:722 ; Mathematics:921 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Social Sciences:971
Scopus记录号
2-s2.0-85136333627
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395592
专题南方科技大学
作者单位
1.Harbin Institute of Technology,Harbin,China
2.Southern University of Science and Technology,Shenzhen,China
3.University of Technology Sydney,Sydney,Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Duan,Qiqi,Zhou,Guochen,Shao,Chang,et al. Distributed evolution strategies for large-scale optimization[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2022:395-398.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Duan,Qiqi]的文章
[Zhou,Guochen]的文章
[Shao,Chang]的文章
百度学术
百度学术中相似的文章
[Duan,Qiqi]的文章
[Zhou,Guochen]的文章
[Shao,Chang]的文章
必应学术
必应学术中相似的文章
[Duan,Qiqi]的文章
[Zhou,Guochen]的文章
[Shao,Chang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。