题名 | Distributed evolution strategies for large-scale optimization |
作者 | |
通讯作者 | Shi,Yuhui |
DOI | |
发表日期 | 2022-07-09
|
会议名称 | Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 395-398
|
会议日期 | JUL 09-13, 2022
|
会议地点 | null,Boston,MA
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | As their underlying models are becoming larger and data-driven, an increasing number of modern real-world applications can be mathematically formulated as large-scale continuous optimization. In this paper, we propose a distributed evolution strategy (DES) for large-scale black-box optimization (specifically with memory-costly function evaluations), running on the mainstream clustering computing platform. In order to amortize the memory cost, DES utilizes the distributed shared memory to support parallelism of function evaluations. For better fitting into the scalable computing architecture of interest, DES adopts the well-known island model to distribute one low-rank version of covariance matrix adaptation (CMA), because the quadratic complexity of the standard CMA is not well scalable. For a proper trade-off between exploration and exploitation, DES needs to, on-the-fly, adjust strategy parameters at two time-scale levels. Experiments show its efficiency on most of test functions chosen. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141235597]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001035469400119
|
EI入藏号 | 20223312576635
|
EI主题词 | Covariance matrix
; Economic and social effects
; Evolutionary algorithms
; Memory architecture
; Optimization
|
EI分类号 | Computer Systems and Equipment:722
; Mathematics:921
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Social Sciences:971
|
Scopus记录号 | 2-s2.0-85136333627
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395592 |
专题 | 南方科技大学 |
作者单位 | 1.Harbin Institute of Technology,Harbin,China 2.Southern University of Science and Technology,Shenzhen,China 3.University of Technology Sydney,Sydney,Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Duan,Qiqi,Zhou,Guochen,Shao,Chang,et al. Distributed evolution strategies for large-scale optimization[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2022:395-398.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论