中文版 | English
题名

A First Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Hot-off-the-Press Track at GECCO 2022)

作者
DOI
发表日期
2022-07-09
会议名称
Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
53-54
会议日期
JUL 09-13, 2022
会议地点
null,Boston,MA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size larger than the Pareto front size by a constant factor, the NSGA-II with two classic mutation operators and three different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LOTZ benchmark functions. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front (for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front). Our experiments confirm the above findings. This paper for the Hot-off-the-Press track at GECCO 2022 summarizes the work Weijie Zheng, Yufei Liu, Benjamin Doerr: A First Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm II (NSGA-II). AAAI2022, accepted [17].
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Investissement d'avenir project[ANR-11-LABX-0056-LMH] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515110177] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001035469400027
EI入藏号
20223312576718
EI主题词
Computation theory ; Genetic algorithms ; Population statistics ; Presses (machine tools)
EI分类号
Machine Tools, General:603.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85136325504
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395596
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Laboratoire d'Informatique (LIX),École Polytechnique,Cnrs,Institut Polytechnique de Paris,Palaiseau,France
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng,Weijie,Liu,Yufei,Doerr,Benjamin. A First Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Hot-off-the-Press Track at GECCO 2022)[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2022:53-54.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Weijie]的文章
[Liu,Yufei]的文章
[Doerr,Benjamin]的文章
百度学术
百度学术中相似的文章
[Zheng,Weijie]的文章
[Liu,Yufei]的文章
[Doerr,Benjamin]的文章
必应学术
必应学术中相似的文章
[Zheng,Weijie]的文章
[Liu,Yufei]的文章
[Doerr,Benjamin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。