中文版 | English
题名

imDedup: A Lossless Deduplication Scheme to Eliminate Fine-grained Redundancy among Images

作者
通讯作者Xia,Wen
DOI
发表日期
2022
会议名称
38th IEEE International Conference on Data Engineering (ICDE)
ISSN
1084-4627
ISBN
978-1-6654-0884-4
会议录名称
卷号
2022-May
页码
1071-1084
会议日期
9-12 May 2022
会议地点
Kuala Lumpur, Malaysia
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Images occupy a large amount of storage in data centers. To cope with the explosive growth of the image storage requirement, image compression techniques are devised to shrink the size of every single image at first. Furthermore, image deduplication methods are proposed to reduce the storage cost as they could be used to eliminate redundancy among images. However, state-of-the-art image deduplication methods either can only eliminate file-level coarse-grained redundancy or cannot guarantee lossless deduplication. In this work, we propose a new lossless image deduplication framework to eliminate fine-grained redundancy among images. It first decodes images to expose similarity, then eliminates fine-grained redundancy on the decoded data by delta compres-sion, and finally re-compresses the remaining data by image compression encoding. Based on this framework, we propose a novel lossless similarity-based deduplication (SBD) scheme for decoded image data (called imDedup). Specifically, imDedup uses a novel and fast sampling method (called Feature Map) to detect similar images in a two-dimensional way, which greatly reduces computation overhead. Meanwhile, it uses a novel delta encoder (called Idelta) which incorporates image compression encoding characteristics into deduplication to guarantee the remaining deduplicated image data to be friendly re-compressed via image encoding, which significantly improves the compression ratio. We implement a prototype of imDedup for JPEG images, and demonstrate its superiority on four datasets: Compared with exact image deduplication, imDedup achieves a 19%-38% higher compression ratio by efficiently eliminating fine-grained redundancy. Compared with the similarity detector and delta encoder of state-of-the-art SBD schemes running on the decoded image data, imDedup achieves a 1.8×-3.4× higher throughput and a 1.3 ×-1. 6 × higher compression ratio, respectively.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
NSFC[61972441]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:000855078401011
EI入藏号
20223512637902
EI主题词
Cost reduction ; Decoding ; Digital storage ; Encoding (symbols) ; Image coding ; Image compression ; Image enhancement ; Signal encoding
EI分类号
Information Theory and Signal Processing:716.1 ; Data Storage, Equipment and Techniques:722.1 ; Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85136441662
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9835287
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395611
专题南方科技大学
作者单位
1.Harbin Institute of Technology,Shenzhen,China
2.National University of Defense Technology,China
3.Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Deng,Cai,Chen,Qi,Zou,Xiangyu,et al. imDedup: A Lossless Deduplication Scheme to Eliminate Fine-grained Redundancy among Images[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:1071-1084.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng,Cai]的文章
[Chen,Qi]的文章
[Zou,Xiangyu]的文章
百度学术
百度学术中相似的文章
[Deng,Cai]的文章
[Chen,Qi]的文章
[Zou,Xiangyu]的文章
必应学术
必应学术中相似的文章
[Deng,Cai]的文章
[Chen,Qi]的文章
[Zou,Xiangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。