中文版 | English
题名

Multiple Consistency Supervision based Semi-supervised OCT Segmentation using Very Limited Annotations

作者
DOI
发表日期
2022
ISSN
1050-4729
ISBN
978-1-7281-9682-4
会议录名称
页码
8483-8489
会议日期
23-27 May 2022
会议地点
Philadelphia, PA, USA
摘要
Optical Coherence Tomography (OCT) is a rapidly growing and promising imaging technique, enabling non-invasive high-resolution visualization of biological tissues. Segmentation of tissue structures from OCT scans is essen-tial for disease diagnosis but remains challenging for the blurry boundaries and large volumes. Deep learning-based OCT segmentation algorithms always require large numbers of annotations for satisfying performance, which is hard to meet since manually labeling is time-consuming and labor-intensive. Therefore, we propose a novel semi-supervised OCT segmentation framework utilizing very few labeled scans, i.e., 5 samples, and abundant unlabeled data. Specifically, our framework con-sists of one shared encoder and two different decoder branches. For the two branches, we design a strong augmentation-consistent supervision module and a scaling transformation-consistent supervision module respectively to improve their generalization ability. Besides, cross consistency supervision with feature perturbations between two branches is proposed to incorporate their advantages for further regularization. With such multiple consistency supervision, we aim to enrich the diversity of unsupervised information so as to make full use of labeled and unlabeled data. Experimental results on a public retinal OCT dataset demonstrate the effectiveness of our method, achieving an average dice score of 87.25% in the case of only 5 labeled samples used. It outperforms the supervised baseline by 3.46% and the best semi-supervised model by 1.42% in our experiments.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20223312572016
EI主题词
Computer vision ; Deep learning ; Diagnosis ; Image segmentation ; Supervised learning ; Tissue
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Computer Applications:723.5 ; Vision:741.2 ; Optical Devices and Systems:741.3
Scopus记录号
2-s2.0-85136328522
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9812447
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395621
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong SAR,Hong Kong
2.Shenzhen Key Laboratory of Robotics Perception and Intelligence,Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Shenzhen Research Institute of the Chinese University of Hong Kong,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Lu,Ye,Shen,Yutian,Xing,Xiaohan,et al. Multiple Consistency Supervision based Semi-supervised OCT Segmentation using Very Limited Annotations[C],2022:8483-8489.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
百度学术
百度学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
必应学术
必应学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。