中文版 | English
题名

A2DIO: Attention-Driven Deep Inertial Odometry for Pedestrian Localization based on 6D IMU

作者
DOI
发表日期
2022
ISSN
1050-4729
ISBN
978-1-7281-9682-4
会议录名称
页码
819-825
会议日期
23-27 May 2022
会议地点
Philadelphia, PA, USA
摘要
In this work, we propose A2DIO, a novel hybrid neural network model with a set of carefully designed attention mechanisms for pose invariant inertial odometry. The key idea is to extract both local and global features from the window of IMU measurements for velocity prediction. A2DIO leverages the convolutional neural network (CNN) to capture the sectional features and long-short term memory (LSTM) recurrent neural network to extract long-range dependencies. In both CNN and LSTM modules, attention mechanisms are designed and embedded for better model representation. Specifically, in the CNN attention block, the convolved features are refined along both channel and spatial dimensions, respectively. For the LSTM module, softmax scoring is applied to update the weights of the hidden states along the temporal axis. We evaluate A2DIO on the benchmark with the largest and most natural IMU data, RoNIN. Extensive ablation experiments demonstrate the effectiveness of our A2DIO model. Compared with the state of the art, the 50th percentile accuracy of A2DIO is 18.21 % higher and the 90th percentile accuracy is 21.15 % higher for all the phone holders not appeared in the training set.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85136326296
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9811714
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395622
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,N.T.,Robotics,Perception and Artificial Intelligence Lab,Electronic Engineering Department,Hong Kong SAR,Hong Kong
2.Shenzhen Key Laboratory of Robotics Perception and Intelligence,Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong,Hong Kong
4.Shenzhen Research Institute of the Chinese University of Hong Kong,Shenzhen,518057,China
推荐引用方式
GB/T 7714
Wang,Yingying,Cheng,Hu,Meng,Max Q.H.. A2DIO: Attention-Driven Deep Inertial Odometry for Pedestrian Localization based on 6D IMU[C],2022:819-825.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。