题名 | Runtime Safety Assurance for Learning-enabled Control of Autonomous Driving Vehicles |
作者 | |
通讯作者 | Li,Dachuan |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Robotics and Automation
|
ISSN | 1050-4729
|
ISBN | 978-1-7281-9682-4
|
会议录名称 | |
页码 | 8978-8984
|
会议日期 | 23-27 May 2022
|
会议地点 | Philadelphia, PA, USA
|
摘要 | Providing safety guarantees for Autonomous Vehicle (AV) systems with machine-learning based controllers remains a challenging issue. In this work, we propose Simplex-Drive, a framework that can achieve runtime safety assurance for machine-learning enabled controllers of AVs. The proposed Simplex-Drive consists of an unverified Deep Reinforcement Learning (DRL)-based advanced controller (AC) that achieves desirable performance in complex scenarios, a Velocity-Obstacle (VO) based baseline safe controller (BC) with provably safety guarantees, and a verified mode management unit that monitors the operation status and switches the control authority between AC and BC based on safety-related conditions. We provide a formal correctness proof of Simplex-Drive and conduct a lane-changing case study in dense traffic scenarios. The simulation experiment results demonstrate that Simplex-Drive can always ensure the operation safety without sacrificing control performance, even if the DRL policy may lead to deviations from the safe status. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20223312572133
|
EI主题词 | Autonomous Vehicles
; Deep Learning
; Reinforcement Learning
|
EI分类号 | Highway Transportation:432
; Ergonomics And Human Factors Engineering:461.4
; Artificial Intelligence:723.4
; Robot Applications:731.6
; Control Equipment:732.1
|
Scopus记录号 | 2-s2.0-85136325794
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9812177 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395623 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China 2.Research Institute for Trustworthy Autonomous Systems,Shenzhen,518055,China 3.Artificial Intelligence Research Center,Defense Innovation Institute,Chinese Academy of Military Science,Beijing,100072,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Shengduo,Sun,Yaowei,Li,Dachuan,et al. Runtime Safety Assurance for Learning-enabled Control of Autonomous Driving Vehicles[C],2022:8978-8984.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论