题名 | JST: Joint Self-training for Unsupervised Domain Adaptation on 2D&3D Object Detection |
作者 | |
通讯作者 | Hao,Qi |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Robotics and Automation
|
ISSN | 1050-4729
|
ISBN | 978-1-7281-9682-4
|
会议录名称 | |
页码 | 477-483
|
会议日期 | 23-27 May 2022
|
会议地点 | Philadelphia, PA, USA
|
摘要 | 2D&3D object detection always suffers from a dramatic performance drop when transferring the model trained in the source domain to the target domain due to various domain shifts. In this paper, we propose a Joint Self-Training (JST) framework to improve 2D image and 3D point cloud detectors with aligned outputs simultaneously during the transferring. The proposed framework contains three novelties to overcome object biases and unstable self-training processes: 1) an anchor scaling scheme is developed to efficiently eliminate the object size biases without any modification on point clouds; 2) a 2D&3D bounding box alignment method is proposed to generate high-quality pseudo labels for the self-training process; 3) a model smoothing based training strategy is developed to reduce the training oscillation properly. Experiment results show that the proposed approach improves the performance of 2D and 3D detectors in the target domain simultaneously; especially the superior accuracy of 3D detection can be achieved on benchmark datasets over the state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20223312572333
|
EI主题词 | Benchmarking
; Computer Vision
; Image Enhancement
; Object Recognition
|
EI分类号 | Data Processing And Image Processing:723.2
; Computer Applications:723.5
; Vision:741.2
|
Scopus记录号 | 2-s2.0-85136321421
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9811975 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395627 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,Guangdong,518055,China 2.Research Institute Of-Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ding,Guangyao,Zhang,Meiying,Li,E.,et al. JST: Joint Self-training for Unsupervised Domain Adaptation on 2D&3D Object Detection[C],2022:477-483.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论