中文版 | English
题名

JST: Joint Self-training for Unsupervised Domain Adaptation on 2D&3D Object Detection

作者
通讯作者Hao,Qi
DOI
发表日期
2022
会议名称
IEEE International Conference on Robotics and Automation
ISSN
1050-4729
ISBN
978-1-7281-9682-4
会议录名称
页码
477-483
会议日期
23-27 May 2022
会议地点
Philadelphia, PA, USA
摘要

2D&3D object detection always suffers from a dramatic performance drop when transferring the model trained in the source domain to the target domain due to various domain shifts. In this paper, we propose a Joint Self-Training (JST) framework to improve 2D image and 3D point cloud detectors with aligned outputs simultaneously during the transferring. The proposed framework contains three novelties to overcome object biases and unstable self-training processes: 1) an anchor scaling scheme is developed to efficiently eliminate the object size biases without any modification on point clouds; 2) a 2D&3D bounding box alignment method is proposed to generate high-quality pseudo labels for the self-training process; 3) a model smoothing based training strategy is developed to reduce the training oscillation properly. Experiment results show that the proposed approach improves the performance of 2D and 3D detectors in the target domain simultaneously; especially the superior accuracy of 3D detection can be achieved on benchmark datasets over the state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20223312572333
EI主题词
Benchmarking ; Computer Vision ; Image Enhancement ; Object Recognition
EI分类号
Data Processing And Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2
Scopus记录号
2-s2.0-85136321421
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9811975
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395627
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,Guangdong,518055,China
2.Research Institute Of-Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ding,Guangyao,Zhang,Meiying,Li,E.,et al. JST: Joint Self-training for Unsupervised Domain Adaptation on 2D&3D Object Detection[C],2022:477-483.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ding,Guangyao]的文章
[Zhang,Meiying]的文章
[Li,E.]的文章
百度学术
百度学术中相似的文章
[Ding,Guangyao]的文章
[Zhang,Meiying]的文章
[Li,E.]的文章
必应学术
必应学术中相似的文章
[Ding,Guangyao]的文章
[Zhang,Meiying]的文章
[Li,E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。