中文版 | English
题名

Exponents in smoothing the max-relative entropy and of randomness extraction against quantum side information

作者
DOI
发表日期
2022
ISSN
2157-8095
ISBN
978-1-6654-2160-7
会议录名称
卷号
2022-June
页码
1862-1867
会议日期
26 June-1 July 2022
会议地点
Espoo, Finland
摘要
This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award.The smooth max-relative entropy is a basic tool in quantum information theory and cryptography. In this paper, we derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy. We then apply this result to the problem of privacy amplification against quantum side information and obtain an upper bound for the exponent of the decreasing of the insecurity, measured using either purified distance or relative entropy. Our upper bound complements the earlier lower bound established by Hayashi, and the two bounds match when the rate of randomness extraction is above a critical value. Thus, for the case of high rate, we have determined the exact security exponent. Following this, we give examples and show that in the low-rate case, neither the upper bound nor the lower bound is tight in general.Lastly, we investigate the asymptotics of equivocation and its exponent under the security measure using the sandwiched Rényi divergence of order between 1 and 2, which has not been addressed previously in the quantum setting.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[12031004];National Natural Science Foundation of China[12071099];National Natural Science Foundation of China[61871156];National Natural Science Foundation of China[61871156];National Natural Science Foundation of China[62171212];
EI入藏号
20223512624603
EI主题词
Extraction ; Information theory ; Quantum optics ; Random processes
EI分类号
Thermodynamics:641.1 ; Information Theory and Signal Processing:716.1 ; Light/Optics:741.1 ; Chemical Operations:802.3 ; Probability Theory:922.1 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85136292681
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9834595
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395633
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Harbin Institute of Technology,Institute for Advanced Study in Mathematics,Harbin,150001,China
2.Harbin Institute of Technology,Institute for Advanced Study in Mathematics,School of Mathematics,Harbin,150001,China
3.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.International Quantum Academy (SIQA),Shenzhen,518048,China
5.Graduate School of Mathematics,Nagoya University,Nagoya,Furo-cho, Chikusa-ku,464-8602,Japan
推荐引用方式
GB/T 7714
Li,Ke,Yao,Yongsheng,Hayashi,Masahito. Exponents in smoothing the max-relative entropy and of randomness extraction against quantum side information[C],2022:1862-1867.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
百度学术
百度学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
必应学术
必应学术中相似的文章
[Li,Ke]的文章
[Yao,Yongsheng]的文章
[Hayashi,Masahito]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。