题名 | Exponents in smoothing the max-relative entropy and of randomness extraction against quantum side information |
作者 | |
DOI | |
发表日期 | 2022
|
ISSN | 2157-8095
|
ISBN | 978-1-6654-2160-7
|
会议录名称 | |
卷号 | 2022-June
|
页码 | 1862-1867
|
会议日期 | 26 June-1 July 2022
|
会议地点 | Espoo, Finland
|
摘要 | This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award.The smooth max-relative entropy is a basic tool in quantum information theory and cryptography. In this paper, we derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy. We then apply this result to the problem of privacy amplification against quantum side information and obtain an upper bound for the exponent of the decreasing of the insecurity, measured using either purified distance or relative entropy. Our upper bound complements the earlier lower bound established by Hayashi, and the two bounds match when the rate of randomness extraction is above a critical value. Thus, for the case of high rate, we have determined the exact security exponent. Following this, we give examples and show that in the low-rate case, neither the upper bound nor the lower bound is tight in general.Lastly, we investigate the asymptotics of equivocation and its exponent under the security measure using the sandwiched Rényi divergence of order between 1 and 2, which has not been addressed previously in the quantum setting. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[12031004];National Natural Science Foundation of China[12071099];National Natural Science Foundation of China[61871156];National Natural Science Foundation of China[61871156];National Natural Science Foundation of China[62171212];
|
EI入藏号 | 20223512624603
|
EI主题词 | Extraction
; Information theory
; Quantum optics
; Random processes
|
EI分类号 | Thermodynamics:641.1
; Information Theory and Signal Processing:716.1
; Light/Optics:741.1
; Chemical Operations:802.3
; Probability Theory:922.1
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85136292681
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9834595 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395633 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Harbin Institute of Technology,Institute for Advanced Study in Mathematics,Harbin,150001,China 2.Harbin Institute of Technology,Institute for Advanced Study in Mathematics,School of Mathematics,Harbin,150001,China 3.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 4.International Quantum Academy (SIQA),Shenzhen,518048,China 5.Graduate School of Mathematics,Nagoya University,Nagoya,Furo-cho, Chikusa-ku,464-8602,Japan |
推荐引用方式 GB/T 7714 |
Li,Ke,Yao,Yongsheng,Hayashi,Masahito. Exponents in smoothing the max-relative entropy and of randomness extraction against quantum side information[C],2022:1862-1867.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论