中文版 | English
题名

Brain Network Connectivity Analysis of Different ADHD Groups Based on CNN-LSTM Classification Model

作者
通讯作者Chen,Shixiong
DOI
发表日期
2022
会议名称
15th International Conference on Intelligent Robotics and Applications (ICIRA ) - Smart Robotics for Society
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-13821-8
会议录名称
卷号
13456 LNAI
页码
626-635
会议日期
AUG 01-03, 2022
会议地点
null,Harbin,PEOPLES R CHINA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Attention deficit hyperactivity disorder (ADHD), as a common disease of adolescents, is characterized by the inability to concentrate and moderate impulsive behavior. Since the clinical level mostly depends on the doctor's psychological and environmental analysis of the patient, there is no objective classification standard. ADHD is closely related to the signal connection in the brain and the study of its brain connection mode is of great significance. In this study, the CNN-LSTM network model was applied to process open-source EEG data to achieve high-precision classification. The model was also used to visualize the features that contributed the most, and generate high-precision feature gradient data. The results showed that the traditional processing of original data was different from that of gradient data and the latter was more reliable. The strongest connections in both ADHD and ADD patients were short-range, whereas the healthy group had long-range connections between the occipital lobe and left anterior temporal regions. This study preliminarily achieved the research purpose of finding differences among three groups of people through the features of brain network connectivity.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China["81927804","62101538"]
WOS研究方向
Computer Science ; Robotics
WOS类目
Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:000870561700055
EI入藏号
20223412602526
EI主题词
Data handling ; Long short-term memory
EI分类号
Biomedical Engineering:461.1 ; Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85136116525
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395637
专题工学院
作者单位
1.CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,Guangdong,518055,China
2.Shenzhen College of Advanced Technology,University of Chinese Academy of Sciences,Shenzhen,Guangdong,518055,China
3.College of Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
4.School of Electronics and Information Engineering,Harbin Institute of Technology,Shenzhen,518055,China
第一作者单位工学院
推荐引用方式
GB/T 7714
He,Yuchao,Wang,Cheng,Wang,Xin,et al. Brain Network Connectivity Analysis of Different ADHD Groups Based on CNN-LSTM Classification Model[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:626-635.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Yuchao]的文章
[Wang,Cheng]的文章
[Wang,Xin]的文章
百度学术
百度学术中相似的文章
[He,Yuchao]的文章
[Wang,Cheng]的文章
[Wang,Xin]的文章
必应学术
必应学术中相似的文章
[He,Yuchao]的文章
[Wang,Cheng]的文章
[Wang,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。