题名 | A Local Deep Learning Method for Solving High Order Partial Differential Equations |
作者 | |
通讯作者 | Zhu,Quanhui |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1004-8979
|
EISSN | 2079-7338
|
卷号 | 15期号:1页码:42-67 |
摘要 | At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high order derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China-Guangdong Joint Fund[11961160718];Applied Basic Research Foundation of Yunnan Province[2018A0303130123];Guangdong Provincial Key Laboratory of Urology[2019B030301001];National Natural Science Foundation of China[NSFC-11871264];
|
WOS记录号 | WOS:000723826100001
|
Scopus记录号 | 2-s2.0-85125719766
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395642 |
专题 | 理学院_数学系 |
作者单位 | 1.International Center of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 3.Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 南方科技大学; 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang,Jiang,Zhu,Quanhui. A Local Deep Learning Method for Solving High Order Partial Differential Equations[J]. Numerical Mathematics-Theory Methods and Applications,2022,15(1):42-67.
|
APA |
Yang,Jiang,&Zhu,Quanhui.(2022).A Local Deep Learning Method for Solving High Order Partial Differential Equations.Numerical Mathematics-Theory Methods and Applications,15(1),42-67.
|
MLA |
Yang,Jiang,et al."A Local Deep Learning Method for Solving High Order Partial Differential Equations".Numerical Mathematics-Theory Methods and Applications 15.1(2022):42-67.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论