中文版 | English
题名

A Local Deep Learning Method for Solving High Order Partial Differential Equations

作者
通讯作者Zhu,Quanhui
发表日期
2022
DOI
发表期刊
ISSN
1004-8979
EISSN
2079-7338
卷号15期号:1页码:42-67
摘要
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high order derivatives lack robustness for training purposes. We propose a novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variables to rewrite the PDEs into a system of low order differential equations as what is done in the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neural network. By taking the residual of the system as a loss function, we can optimize the network parameters to approximate the solution. The whole process relies on low order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularly well-suited for high-dimensional PDEs with high order derivatives.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China-Guangdong Joint Fund[11961160718];Applied Basic Research Foundation of Yunnan Province[2018A0303130123];Guangdong Provincial Key Laboratory of Urology[2019B030301001];National Natural Science Foundation of China[NSFC-11871264];
WOS记录号
WOS:000723826100001
Scopus记录号
2-s2.0-85125719766
来源库
Scopus
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395642
专题理学院_数学系
作者单位
1.International Center of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
3.Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位南方科技大学;  数学系
通讯作者单位数学系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yang,Jiang,Zhu,Quanhui. A Local Deep Learning Method for Solving High Order Partial Differential Equations[J]. Numerical Mathematics-Theory Methods and Applications,2022,15(1):42-67.
APA
Yang,Jiang,&Zhu,Quanhui.(2022).A Local Deep Learning Method for Solving High Order Partial Differential Equations.Numerical Mathematics-Theory Methods and Applications,15(1),42-67.
MLA
Yang,Jiang,et al."A Local Deep Learning Method for Solving High Order Partial Differential Equations".Numerical Mathematics-Theory Methods and Applications 15.1(2022):42-67.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Jiang]的文章
[Zhu,Quanhui]的文章
百度学术
百度学术中相似的文章
[Yang,Jiang]的文章
[Zhu,Quanhui]的文章
必应学术
必应学术中相似的文章
[Yang,Jiang]的文章
[Zhu,Quanhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。