题名 | Large-area Nanostructures Manipulation: Pattern Generation, Size Modulation and Pattern Transfer |
姓名 | |
姓名拼音 | GAN Zhuofei
|
学号 | 11850027
|
学位类型 | 博士
|
学位专业 | 机械工程
|
导师 | |
导师单位 | 深港微电子学院
|
论文答辩日期 | 2022-08-10
|
论文提交日期 | 2022-09-06
|
学位授予单位 | 香港大学
|
学位授予地点 | 香港
|
摘要 | Recently, nanostructures have become vitally crucial in a wide variety of emerging applications. The high-throughput structure generation, precise feature size control, and high-fidelity pattern transfer remain challenging because of various process limitations. Based on interference lithography, several strategies are theoretically and experimentally studied in this dissertation to achieve large-area, high-performance, and versatile nanopatterning. To achieve the nanopatterning of high-aspect-ratio structures, the interference pattern contrast is numerically and experimentally investigated on a home-built phase-locked interference lithography system. Enlarging the exposure latitude for the linewidth control, the sufficient interference pattern contrast is very crucial to achieving the desired feature sizes in the photoresist. Using high-contrast interference fringes for exposure, sub-50-nm, high-aspect-ratio, and wafer-scale nanopatterning can be fabricated in photoresist and the high-aspect-ratio attribute makes the resist pattern well suited for pattern transfer techniques used in nanoimprint mold fabrication. To achieve high-quality IL nanopatterning on diverse substrates, a process optimization strategy is devised to reduce the standing wave based on numerical modeling. Since the multi-layer substrates usually introduce the optical mismatch in the photoresist resulting in the standing wave phenomenon, which significantly affects the nanopattern quality. Using the tri-layer resist process for high-fidelity pattern transfer as an example, the condition of standing wave generation can be quantitatively characterized by calculating the interface reflectance and the electric field distribution of the photoresist. The standing wave reduction can be achieved by well-designing the multi-layer thicknesses before exposure. This systematic numerical analysis can also be extended in complex multi-layer substrates for the perfect nanopatterning using IL. To achieve the nanopatterning on unconventional substrates, a high-fidelity and clean nanotransfer lithography strategy is proposed. The water-soluble material is used as the transfer carrier to fully embed pre-fabricated nanostructures to well maintain the order and triboelectric charges on the carrier surface work as adhesive media to ensure high transfer yield. Based on this, we demonstrate the transfer of nanostructures of high resolution, high aspect ratio, three-dimensional profiles, and various materials. The pattern transfer can be also demonstrated on diverse receivers that can be rigid, soft, planar, or curved, even including a 125-μm-diameter single-mode optical fiber. To achieve the nanopatterning with spatially varying dimensions, a lithographic portfolio that enables precise local dimension tunability is invented. The modulation resolution can be down to the sub-wavelength scale and the modulation area can be up to the wafer scale. Using this novel, high-throughput nanopatterning strategy, 4-inch wafer-scale nanogratings with highly uniform linewidths and 3-inch wafer-scale high-resolution structural color painting are demonstrated. The methods studied in this dissertation can be combined with each other and compatible with most mature nanofabrication techniques, indicating applications in nanoscience and nanotechnology fields such as nanophotonics, meta-optics, biosciences, etc. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2022-12
|
参考文献列表 | [References1 Feynman, R. P. There's plenty of room at the bottom [data storage]. Journal of microelectromechanical systems 1, 60-66 (1992).2 Broers, A., Molzen, W., Cuomo, J. & Wittels, N. Electron‐beam fabrication of 80‐Å metal structures. Applied Physics Letters 29, 596-598 (1976).3 Pease, R. Electron beam lithography. Contemporary Physics 22, 265-290 (1981).4 Grigorescu, A. & Hagen, C. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. Nanotechnology 20, 292001 (2009).5 Kurihara, K. A focused ion beam system for submicron lithography. Journal of Vacuum Science & Technology B 3, 41-44 (1985).6 Tseng, A. A. Recent developments in nanofabrication using focused ion beams. Small 1, 924-939 (2005).7 Li, W.-D., Wu, W. & Stanley Williams, R. Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns. Journal of Vacuum Science & Technology B 30, 06F304 (2012).8 Von Gutfeld, R. & Chaudhari, P. Laser writing and erasing on chalcogenide films. Journal of Applied Physics 43, 4688-4693 (1972).9 Selimis, A., Mironov, V. & Farsari, M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectronic Engineering 132, 83-89 (2015).10 Finders, J. et al. in Optical Microlithography XIII. 192-205 (SPIE).11 Nakao, S. et al. in Optical Microlithography XIII. 358-365 (SPIE).12 Vandenberghe, G. et al. in Optical Microlithography XIV. 179-190 (SPIE).13 Pirati, A. et al. EUV lithography performance for manufacturing: status and outlook. Extreme Ultraviolet Lithography VII 9776, 78-92 (2016).14 Kim, S.-S. et al. in Extreme Ultraviolet (EUV) Lithography VIII. 1014306 (SPIE).15 Levinson, H. J. & Brunner, T. A. in International Conference on Extreme Ultraviolet Lithography 2018. 5-11 (SPIE).16 Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint of sub‐25 nm vias and trenches in polymers. Applied Physics Letters 67, 3114-3116 (1995).17 Chou, S. Y., Krauss, P. R. & Renstrom, P. J. J. S. Imprint lithography with 25-nanometer resolution. Science 272, 85-87 (1996).18 Austin, M. D. et al. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters 84, 5299-5301 (2004).19 Ahn, S. H. & Guo, L. J. High‐speed roll‐to‐roll nanoimprint lithography on flexible plastic substrates. Advanced Materials 20, 2044-2049 (2008).20 Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304-2310 (2009).21 Cho, Y. et al. Development of large area nano imprint technology by step and repeat process and pattern stitching technique. Microelectronic Engineering 86, 2417-2422 (2009).22 Peroz, C. et al. Single digit nanofabrication by step-and-repeat nanoimprint lithography. Nanotechnology 23, 015305 (2011).23 Black, C. T. Polymer self-assembly as a novel extension to optical lithography. Acs Nano 1, 147-150 (2007).24 Cheng, J. Y. et al. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist. ACS Nano 4, 4815-4823 (2010).25 Hulteen, J. C. & Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A 13, 1553-1558 (1995).26 Cheung, C. L., Nikolić, R., Reinhardt, C. & Wang, T. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17, 1339 (2006).27 Byun, I. & Kim, J. Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser. Journal of Micromechanics & Microengineering 20, 055024 (2010).28 Farhoud, M. et al. Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist. Journal of Vacuum Science & Technology B 17, 3182-3185 (1999).29 Liang, C. W. et al. Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography. Optics Express 26, 8194-8200 (2018).30 Feng, J. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics 1, 404-410 (2018).31 Xu, T. et al. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128-3136 (2011).32 Lee, K.-T., Seo, S., Yong Lee, J. & Jay Guo, L. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters. Applied Physics Letters 104, 231112 (2014).33 Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proceedings of the National Academy of Sciences 106, 19227-19232 (2009).34 Balaur, E. et al. Colorimetric histology using plasmonically active microscope slides. Nature 598, 65-71 (2021).35 Yu, Y. F. et al. High‐transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser & Photonics Reviews 9, 412-418 (2015).36 Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nature Communications 9, 1-9 (2018).37 Yoon, G. et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698-706 (2021).38 Li, H. et al. Breathable and Skin‐Conformal Electronics with Hybrid Integration of Microfabricated Multifunctional Sensors and Kirigami‐Structured Nanofibrous Substrates. Advanced Functional Materials, 2202792 (2022).39 Seo, M.-H. et al. Material-independent nanotransfer onto a flexible substrate using mechanical-interlocking structure. ACS Nano 12, 4387-4397 (2018).40 Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nature Electronics 4, 513-521 (2021).41 Wu, M. et al. Ultrasensitive Molecular Detection at Subpicomolar Concentrations by the Diffraction Pattern Imaging with Plasmonic Metasurfaces and Convex Holographic Gratings. Advanced Science, 2201682 (2022).42 Yang, J. et al. Photonic crystal fiber metalens. Nanophotonics 8, 443-449 (2019).43 Hadibrata, W., Wei, H., Krishnaswamy, S. & Aydin, K. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Letters 21, 2422-2428 (2021).44 Tseng, M. L. et al. Metalenses: advances and applications. Advanced Optical Materials 6, 1800554 (2018).45 Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016).46 Walther, B. et al. Spatial and spectral light shaping with metamaterials. Advanced Materials 24, 6300-6304 (2012).47 Zhao, R. et al. Controllable Polarization and Diffraction Modulated Multi‐Functionality Based on Metasurface. Advanced Optical Materials 10, 2102596 (2022).48 Huo, P. et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. 7, 1171-1172 (2020).49 Kumar, K. et al. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 557-561 (2012).50 Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nature Communications 9, 1-10 (2018).51 Lan, S. et al. Metasurfaces for near-eye augmented reality. ACS Photonics 6, 864-870 (2019).52 Xiong, J., Hsiang, E.-L., He, Z., Zhan, T. & Wu, S.-T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light: Science & Applications 10, 1-30 (2021).53 Cai, J. et al. Highly-facile template-based selective electroless metallization of micro-and nanopatterns for plastic electronics and plasmonics. Journal of Materials Chemistry C 7, 4363-4373 (2019).54 Cai, J. et al. Solution‐Processed Large‐Area Gold Nanocheckerboard Metasurfaces on Flexible Plastics for Plasmonic Biomolecular Sensing. Advanced Optical Materials, 1900516 (2019).55 Chen, L. et al. Nanostructured texturing of CH3NH3PbI3 perovskite thin film on flexible substrate for photodetector application. Organic Electronics 71, 284-289 (2019).56 Savas, T., Schattenburg, M., Carter, J. & Smith, H. I. Large‐area achromatic interferometric lithography for 100 nm period gratings and grids. Journal of Vacuum Science & Technology B 14, 4167-4170 (1996).57 Mukherjee, P. et al. Plasma etch fabrication of 60: 1 aspect ratio silicon nanogratings with 200 nm pitch. Journal of Vacuum Science & Technology B 28, C6P70-C76P75 (2010).58 Solak, H. H. et al. Sub-50 nm period patterns with EUV interference lithography. Microelectronic Engineering 67, 56-62 (2003).59 Golovkina, V. et al. Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography. Journal of Vacuum Science & Technology B 22, 99-103 (2004).60 Sun, Y.-L., Mikolas, D., Chang, E.-C., Lin, P.-T. & Fu, C.-C. Lloyd's mirror interferometer using a single-mode fiber spatial filter. Journal of Vacuum Science & Technology B 31, 021604 (2013).61 Hung, Y.-J., Chang, P.-C., Lin, Y.-N. & Lin, J.-J. Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity. Journal of Vacuum Science & Technology B 34, 040609 (2016).62 Solak, H., David, C., Gobrecht, J., Wang, L. & Cerrina, F. Multiple-beam interference lithography with electron beam written gratings. Journal of Vacuum Science & Technology B 20, 2844-2848 (2002).63 Zaidi, S. H. & Brueck, S. R. High aspect-ratio holographic photoresist gratings. Applied Optics 27, 2999-3002 (1988).64 Bai, S. Nanophotonic devices, applications and fabrication by nanoimprint lithography. PhD Thesis (2007).65 Dill, F. H., Hornberger, W. P., Hauge, P. S. & Shaw, J. M. Characterization of positive photoresist. IEEE Transactions on electron devices 22, 445-452 (1975).66 Babu, S. & Barouch, E. Exact solution of Dill's model equations for positive photoresist kinetics. IEEE Electron Device Letters 7, 252-253 (1986).67 Mello, B. d. A., da Costa, I. F., Lima, C. R. & Cescato, L. Developed profile of holographically exposed photoresist gratings. Applied Optics 34, 597-603 (1995).68 Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. Journal of Vacuum Science & Technology B 14, 4129-4133 (1996).69 Guo, L. J. Nanoimprint lithography: methods and material requirements. Advanced Materials 19, 495-513 (2007).70 Lin, T.-H., Yang, Y.-K. & Fu, C.-C. Integration of multiple theories for the simulation of laser interference lithography processes. Nanotechnology 28, 475301 (2017).71 Fan, Y. et al. in Optical Microlithography XVIII. 1805-1816 (SPIE).72 Mack, C. A. Analytical expression for the standing wave intensity in photoresist. Applied Optics 25, 1958-1961 (1986).73 Jeon, T. Y., Park, S. G., Kim, D. H. & Kim, S. H. Standing‐wave‐assisted creation of nanopillar arrays with vertically integrated nanogaps for SERS‐active substrates. Advanced Functional Materials 25, 4681-4688 (2015).74 Schattenburg, M., Aucoin, R. & Fleming, R. Optically matched trilevel resist process for nanostructure fabrication. Journal of Vacuum Science & Technology B 13, 3007-3011 (1995).75 Min, S. et al. Ultrasensitive Molecular Detection by Imaging of Centimeter‐Scale Metasurfaces with a Deterministic Gradient Geometry. Advanced Materials 33, 2100270 (2021).76 https://refractiveindex.info/.77 Hosseini, A. & Massoud, Y. A low-loss metal-insulator-metal plasmonic bragg reflector. Optics Express 14, 11318-11323 (2006).78 Zhang, J. et al. Electrical tuning of metal-insulator-metal metasurface with electro-optic polymer. 113, 231102 (2018).79 Dorodnyy, A., Koepfli, S. M., Lochbaum, A. & Leuthold, J. Design of CMOS-compatible metal–insulator–metal metasurfaces via extended equivalent-circuit analysis. Scientific Reports 10, 1-12 (2020).80 Al Mahmod, M. J., Hyder, R. & Islam, M. Z. A highly sensitive metal–insulator–metal ring resonator-based nanophotonic structure for biosensing applications. IEEE Sensors Journal 18, 6563-6568 (2018).81 Baffou, G. & Quidant, R. Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat. Laser & Photonics Reviews 7, 171-187 (2013).82 Bouillard, J.-S. G., Dickson, W., O’Connor, D. P., Wurtz, G. A. & Zayats, A. V. Low-temperature plasmonics of metallic nanostructures. Nano Letters 12, 1561-1565 (2012).83 Khan, A. et al. High‐performance flexible transparent electrode with an embedded metal mesh fabricated by cost‐effective solution process. Small 12, 3021-3030 (2016).84 Didiot, C., Pons, S., Kierren, B., Fagot-Revurat, Y. & Malterre, D. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nature Nanotechnology 2, 617-621 (2007).85 Lee, K.-L., Wu, T.-Y., Hsu, H.-Y., Yang, S.-Y. & Wei, P.-K. Low-cost and rapid fabrication of metallic nanostructures for sensitive biosensors using hot-embossing and dielectric-heating nanoimprint methods. Sensors 17, 1548 (2017).86 Valsecchi, C. & Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 29, 5638-5649 (2013).87 Chen, Y. et al. Reliable Patterning, Transfer Printing and Post‐Assembly of Multiscale Adhesion‐Free Metallic Structures for Nanogap Device Applications. Advanced Functional Materials 30, 2002549 (2020).88 Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials 5, 33-38 (2006).89 Schaper, C. D. Patterned transfer of metallic thin film nanostructures by water-soluble polymer templates. Nano Letters 3, 1305-1309 (2003).90 Chanda, D. et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nature Nanotechnology 6, 402-407 (2011).91 Li, Z. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nature communications 11, 1-8 (2020).92 Park, T. W. et al. Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability. Science Advances 6, eabb6462 (2020).93 Tiefenauer, R. F., Tybrandt, K., Aramesh, M. & Voros, J. Fast and versatile multiscale patterning by combining template-stripping with nanotransfer printing. ACS Nano 12, 2514-2520 (2018).94 Hwang, S. H. et al. Covalent bonding-assisted nanotransfer lithography for the fabrication of plasmonic nano-optical elements. Nanoscale 9, 14335-14346 (2017).95 Hwang, S. H. et al. Repeatable and metal-independent nanotransfer printing based on metal oxidation for plasmonic color filters. Nanoscale 11, 11128-11137 (2019).96 Ko, J. et al. Nanotransfer printing on textile substrate with water-soluble polymer nanotemplate. ACS Nano 14, 2191-2201 (2020).97 Zhao, Z.-J. et al. Adhesive-layer-free and double-faced nanotransfer lithography for a flexible large-area metasurface hologram. ACS Applied Materials & Interfaces 12, 1737-1745 (2019).98 Liu, J. et al. Sacrificial layer-assisted nanoscale transfer printing. Microsystems & nanoengineering 6, 1-10 (2020).99 Zhang, C., Cai, J., Liang, C., Khan, A. & Li, W. D. Scalable fabrication of metallic nanofiber network via templated electrodeposition for flexible electronics. Advanced Functional Materials 29, 1903123 (2019).100 Khan, A. et al. Template‐Electrodeposited and Imprint‐Transferred Microscale Metal‐Mesh Transparent Electrodes for Flexible and Stretchable Electronics. Advanced Engineering Materials 21, 1900723 (2019).101 Diaz, A. & Felix-Navarro, R. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. Journal of Electrostatics 62, 277-290 (2004).102 Zou, H. et al. Quantifying the triboelectric series. Nature communications 10, 1-9 (2019).103 Zou, H. et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature communications 11, 1-7 (2020).104 Niu, S. et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environmental Science 6, 3576-3583 (2013).105 Zhou, Y. S. et al. In situ quantitative study of nanoscale triboelectrification and patterning. Nano letters 13, 2771-2776 (2013).106 Zhao, Z.-J. et al. 3D layer-by-layer Pd-containing nanocomposite platforms for enhancing the performance of hydrogen sensors. ACS Sensors 5, 2367-2377 (2020).107 Sahatiya, P., Puttapati, S. K., Srikanth, V. V. & Badhulika, S. Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flexible and Printed Electronics 1, 025006 (2016).108 Wang, X. et al. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Scientific reports 6, 1-10 (2016).109 Chen, X. et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Applied Materials & Interfaces 11, 42594-42606 (2019).110 Zhao, Z.-J. et al. Nanopattern-embedded micropillar structures for security identification. ACS Applied Materials & Interfaces 11, 30401-30410 (2019).111 Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nature communications 5, 1-12 (2014).112 Li, S. & Li, W.-D. Refractive index sensing using disk-hole coupling plasmonic structures fabricated on fiber facet. Optics Express 25, 29380-29388 (2017).113 Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature photonics 12, 540-547 (2018).114 Principe, M. et al. Optical fiber meta-tips. Light: Science & Applications 6, e16226-e16226 (2017).115 Lipomi, D. J. et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano letters 11, 632-636 (2011).116 Zhang, C. et al. G-Fresnel smartphone spectrometer. Lab on a Chip 16, 246-250 (2016).117 Joo, W.-J. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459-463 (2020).118 Li, W.-D., Ding, F., Hu, J. & Chou, S. Y. Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Optics Express 19, 3925-3936 (2011).119 Cai, J., Zhang, C. & Li, W. D. Dual‐Color Flexible Metasurfaces with Polarization‐Tunable Plasmons in Gold Nanorod Arrays. Advanced Optical Materials 9, 2001401 (2021).120 Zheng, H. et al. Large-scale metasurfaces based on grayscale nanosphere lithography. ACS Photonics 8, 1824-1831 (2021).121 Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature Biotechnology 32, 490-495 (2014).122 Savas, T., Shah, S. N., Schattenburg, M., Carter, J. & Smith, H. I. Achromatic interferometric lithography for 100‐nm‐period gratings and grids. Journal of Vacuum Science & Technology B 13, 2732-2735 (1995).123 Hu, P.-c. et al. Displacement measuring grating interferometer: a review. Frontiers of Information Technology & Electronic Engineering 20, 631-654 (2019).124 Kang, M., Han, C. & Jeon, H. Submicrometer-scale pattern generation via maskless digital photolithography. Optica 7, 1788-1795 (2020).125 Dong, Z. et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Letters 17, 7620-7628 (2017).126 Wang, H. et al. Full color and grayscale painting with 3D printed low-index nanopillars. Nano Letters 21, 4721-4729 (2021).127 Khorasaninejad, M. & Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 358, eaam8100 (2017).128 Wang, S. et al. A broadband achromatic metalens in the visible. Nature Nanotechnology 13, 227-232 (2018).129 Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology 14, 227-231 (2019).130 Liu, Z., Pang, Y., Pan, C. & Huang, Z. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Optics Express 25, 30720-30731 (2017).131 Gu, L. et al. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator. Optics Express 27, 12692-12709 (2019).132 Zhu, X., Yan, W., Levy, U., Mortensen, N. A. & Kristensen, A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Science Advances 3, e1602487 (2017).133 Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nature Communications 11, 1-8 (2020).134 Sun, S. et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445-4452 (2017).135 Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011).136 Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications 11, 1-10 (2020).137 McDonnell, C., Deng, J., Sideris, S., Ellenbogen, T. & Li, G. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nature Communications 12, 1-8 (2021).138 Tang, Y. et al. Nano‐Kirigami metasurface with giant nonlinear optical circular dichroism. Laser & Photonics Reviews 14, 2000085 (2020).139 Cai, J. et al. 3D volumetric energy deposition of focused helium ion beam lithography: visualization, modeling, and applications in nanofabrication. Advanced Materials Interfaces 5, 1800203 (2018).140 Xia, D., Ku, Z., Lee, S. & Brueck, S. Nanostructures and functional materials fabricated by interferometric lithography. Advanced Materials 23, 147-179 (2011).141 Min, S. et al. Gradient wettability induced by deterministically patterned nanostructures. Microsystems & Nanoengineering 6, 1-9 (2020).142 Gan, Z. et al. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. Journal of Vacuum Science & Technology B 37, 060601 (2019).143 Levinson, H. J. Principles of lithography. Vol. 146 (SPIE press, 2005).144 Mack, C. Fundamental principles of optical lithography: the science of microfabrication. (John Wiley & Sons, 2008).145 O’Reilly, T. B. & Smith, H. I. Photoresist characterization using double exposures with interference lithography. Journal of Vacuum Science & Technology B 26, 128-131 (2008).146 Chang, E.-C. et al. Improving feature size uniformity from interference lithography systems with non-uniform intensity profiles. Nanotechnology 24, 455301 (2013).147 Hinsberg, W. et al. Deep-ultraviolet interferometric lithography as a tool for assessment of chemically amplified photoresist performance. Journal of Vacuum Science & Technology B 16, 3689-3694 (1998).148 Fallica, R., Kirchner, R., Schift, H. & Ekinci, Y. High-resolution grayscale patterning using extreme ultraviolet interference lithography. Microelectronic Engineering 177, 1-5 (2017).149 Haas, M. R. in Airborne Telescope Systems II. 85-96 (SPIE).150 Barnes, S. et al. in Ground-based and Airborne Instrumentation for Astronomy II. 247-258 (SPIE).151 Lu, P. P. et al. Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle. Optics Letters 34, 1708-1710 (2009).152 Yue, G., Lei, Y., Die, J.-H., Jia, H.-Q. & Chen, H. Fabrication of 4-inch nano patterned wafer with high uniformity by laser interference lithography. Chinese Physics Letters 35, 054207 (2018).153 Yang, Y.-K., Wu, Y.-X., Lin, T.-H., Yu, C.-W. & Fu, C.-C. in Laser-based Micro-and Nanoprocessing X. 199-207 (SPIE).154 Rouw, R. & Scholte, H. S. Increased structural connectivity in grapheme-color synesthesia. Nature Neuroscience 10, 792-797 (2007).155 Ji, C. et al. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Advanced Optical Materials 5, 1700368 (2017).156 Zollinger, H. Color chemistry: syntheses, properties, and applications of organic dyes and pigments. (John Wiley & Sons, 2003).157 Ge, D. et al. A robust smart window: reversibly switching from high transparency to angle‐independent structural color display. Advanced Materials 27, 2489-2495 (2015).158 Walia, J., Dhindsa, N., Khorasaninejad, M. & Saini, S. S. Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays. Small 10, 144-151 (2014).159 Duempelmann, L., Casari, D., Luu-Dinh, A., Gallinet, B. & Novotny, L. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383-12391 (2015).160 Zhang, Y. et al. Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing. ACS Nano 12, 9913-9921 (2018).161 Baek, K., Kim, Y., Mohd-Noor, S. & Hyun, J. K. Mie resonant structural colors. ACS Applied Materials & Interfaces 12, 5300-5318 (2020).162 Lu, L. et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano 15, 19722-19732 (2021).163 Wang, Y. et al. Bioinspired structural color patch with anisotropic surface adhesion. Science Advances 6, eaax8258 (2020).164 Cao, X. et al. Replicating the Cynandra opis Butterfly's Structural Color for Bioinspired Bigrating Color Filters. Advanced Materials 34, 2109161 (2022).165 Chen, S. et al. Tunable Structural Color Images by UV‐Patterned Conducting Polymer Nanofilms on Metal Surfaces. Advanced Materials 33, 2102451 (2021).166 Zhou, L. et al. Dynamic structural color from wrinkled thin films. Advanced Optical Materials 8, 2000234 (2020).167 Ng, R. J. H., Krishnan, R. V., Wang, H. & Yang, J. K. Darkfield colors from multi-periodic arrays of gap plasmon resonators. Nanophotonics 9, 533-545 (2020).168 Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Advanced Materials 34, 2108128 (2022).169 Chen, Y. et al. Dynamic color displays using stepwise cavity resonators. Nano Letters 17, 5555-5560 (2017).170 Daqiqeh Rezaei, S., Ho, J., Wang, T., Ramakrishna, S. & Yang, J. K. Direct color printing with an electron beam. Nano Letters 20, 4422-4429 (2020).171 Yan, Z. et al. Floating solid-state thin films with dynamic structural colour. Nature Nanotechnology 16, 795-801 (2021).172 Proust, J., Bedu, F., Gallas, B., Ozerov, I. & Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761-7767 (2016).173 Yang, B. et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Letters 19, 4221-4228 (2019).174 Kong, D. et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams. Optics Express 29, 36720-36733 (2021). |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/395676 |
专题 | 南方科技大学-香港科技大学深港微电子学院筹建办公室 |
推荐引用方式 GB/T 7714 |
Gan ZF. Large-area Nanostructures Manipulation: Pattern Generation, Size Modulation and Pattern Transfer[D]. 香港. 香港大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11850027-甘斫非-南方科技大学-(11470KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[甘斫非]的文章 |
百度学术 |
百度学术中相似的文章 |
[甘斫非]的文章 |
必应学术 |
必应学术中相似的文章 |
[甘斫非]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论