[1. Blaser, H.; Spindler, F.; Studer, M., Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General 2001, 221 (1-2), 119-143.2. Blaser, H. U.; Pugin, B.; Spindler, F.; Saudan, L. A., Hydrogenation. Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes 2017, 621-690.3. Osborn, J.; Wilkinson, G.; Mrowca, J., Tris(triphenylphosphine)halorhodium (I). Inorg. Synth. 1967, 10, 67-71.4. Knowles, W. S.; Sabacky, M. J.; Vineyard, B., Catalytic asymmetric hydrogenation. J.Chem. Soc, Chem. Commun. 1972, (1), 10-11.5. Knowles, W. S., Asymmetric hydrogenations (Nobel lecture). Angew. Chem. Int. Ed.2002, 41 (12), 1998-2007.6. Dang, T.; Kagan, H., The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J. Chem. Soc., Chem. Commun., 1971, (10), 481-481.7. Knowles, W. S.; Sabacky, M. J.; Vineyard, B.; Weinkauff, D., Asymmetric hydrogenation with a complex of rhodium and a chiral bisphosphine. J. Am. Chem. Soc. 1975, 97 (9), 2567-2568.8. Miyashita, a. A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R.,Synthesis of 2, 2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomericchiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetrichydrogenation of. alpha.-(acylamino)acrylic acids. J. Am. Chem. Soc. 1980, 102 (27),7932-7934.9. Noyori, R.; Tomino, I.; Tanimoto, Y., Virtually complete enantioface differentiation incarbonyl group reduction by a complex aluminum hydride reagent. J. Am. Chem. Soc. 1979, 101 (11), 3129-3131.10. Cram, D. J.; Cram, J. M., Design of complexes between synthetic hosts and organicguests. Acc. Chem. Res. 1978, 11 (1), 8-14.11. Tang, W. J.; Zhang, X. M., New chiral phosphorus ligands for enantioselectivehydrogenation. Chem. Rev. 2003, 103 (8), 3029-3069.12. Zhang, W.; Chi, Y.; Zhang, X., Developing chiral ligands for asymmetrichydrogenation. Acc. Chem. Res. 2007, 40 (12), 1278-1290.13. Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G., Asymmetric hydrogenation ofheteroarenes and arenes. Chem. Rev. 2012, 112 (4), 2557-90.14. Andrushko, N.; Andrushko, V., Asymmetric Hydrogenation of C=O and C=N Bondsin Stereoselective Synthesis. Stereoselective Synthesis of Drugs and Natural Products2013, 1-52.15. Hopmann, K. H.; Bayer, A., Enantioselective imine hydrogenation with iridiumcatalysts: Reactions, mechanisms and stereocontrol. Coord. Chem. Rev. 2014, 268, 59-82.16. Li, W.; Zhang, X. M., Asymmetric Hydrogenation of Imines. In StereoselectiveFormation of Amines, Li, W.; Zhang, X., Eds. 2014; Vol. 343, pp 103-144.17. Yoshimura, M.; Tanaka, S.; Kitamura, M., Recent topics in catalytic asymmetrichydrogenation of ketones. Tetrahedron Lett. 2014, 55 (27), 3635-3640.18. Kuwano, R., Transition-Metal-Catalyzed Asymmetric Hydrogenation of Aromatics.Asymmetric Dearomatization Reactions., 2016.19. Zhang, Z.; Butt, N. A.; Zhang, W., Asymmetric Hydrogenation of Nonaromatic CyclicSubstrates. Chem. Rev. 2016, 116 (23), 14769-14827.20. Gajewy, J.; Łowicki, D.; Kwit, M., From Noble Metals to Fe-, Co-, and Ni-basedCatalysts: A Case Study of Asymmetric Reductions. Chiral Lewis Acids in OrganicSynthesis., 2017, 183.21. Xie, X.; Lu, B.; Li, W.; Zhang, Z., Coordination determined chemo- andenantioselectivities in asymmetric hydrogenation of multi-functionalized ketones. Coord. Chem. Rev., 2018, 355, 39-53.22. Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W., Asymmetric Transfer andPressure Hydrogenation with Earth-Abundant Transition Metal Catalysts. Chin. J. Chem.2018, 36 (5), 443-454.23. Wan, F.; Tang, W., Phosphorus ligands from the Zhang lab: Design, asymmetrichydrogenation, and industrial applications. Chin. J. Chem. 2021, 39 (4), 954-968.24. Zhao, Q.; Chen, C.; Wen, J.; Dong, X.-Q.; Zhang, X., Noncovalent interactionassistedferrocenyl phosphine ligands in asymmetric catalysis. Acc. Chem. Res. 2020, 53(9), 1905-1921.25. Moulton, C. J.; Shaw, B. L., Transition metal–carbon bonds. Part XLII. Complexes ofnickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2, 6-bis [(di-tbutylphosphino)methyl] phenyl. J. Chem. Soc, Dalton Trans., 1976, (11), 1020-1024.26. Empsall, H. D.; Hyde, E. M.; Markham, R.; McDonald, W. S.; Norton, M. C.; Shaw,B. L.; Weeks, B., Synthesis and X-ray structure of an unusual iridium ylide or carbenecomplex. J. Chem. Soc., Chem. Commun., 1977, (17), 589-590.27. Crocker, C.; Errington, R. J.; Markham, R.; Moulton, C. J.; Odell, K. J.; Shaw, B.L., Large-ring and cyclometalated rhodium complexes from some medium-chain. alpha.,.omega.-diphosphines. J. Am. Chem. Soc., 1980, 102 (13), 4373-4379.28. Briggs, J. R.; Constable, A. G.; McDonald, W. S.; Shaw, B. L., Transition metal–carbon bonds. Part 53. The further chemistry of cyclometallated complexes formed fromtBu2P(CH2)5PtBu2 and PtCl2: crystal structure of [PtCl{tBu2PCH2CH2C=CHCH2PtBu2}]. Journal of the Chemical Society, Dalton Transactions 1982, (7), 1225-1230.29. Crocker, C.; Empsall, H. D.; Errington, R. J.; Hyde, E. M.; McDonald, W. S.;Markham, R.; Norton, M. C.; Shaw, B. L.; Weeks, B., Transition metal–carbon bonds.Part 52. Large ring and cyclometallated complexes formed from tBu2PCH2CH2CHRCH2CH2PtBu2 (R= H or Me) and IrCl3, or [Ir2Cl4(cyclooctene)4]: crystal structures of thecyclometallated hydride,[IrHCl(tBu2PCH2CH2CHCH2CH2PtBu2)], and the carbenecomplex [IrCl(tBu2PCH2CH2CCH2CH2PtBu2)]. J. Chem. Soc., Dalton Trans., 1982, (7),1217-1224.30. Crocker, C.; Errington, R. J.; Markham, R.; Moulton, C. J.; Shaw, B. L., Furtherstudies on the interconversion of large ring and cyclometallated complexes of rhodium,with the diphosphines tBu2P(CH2)5PtBu2 and tBu2PCH2CH=CHCH2PtBu2. J. Chem. Soc., Dalton Trans., 1982, (2), 387-395.31. Errington, R. J.; McDonald, W. S.; Shaw, B. L., Transition metal–carbon bonds. Part54. Complexes of palladium, platinum, rhodium, and iridium with tBu2PCH2CHMe(CH2)3PtBu2. Crystal structures of [PdCl(tBu2PCH2CHMeCHCH2CH2PtBu2)] and [IrH(Cl)(tBu2PCH2CHMeCHCH2CH2PtBu2)]. J. Chem. Soc., Dalton Trans., 1982, (9), 1829-1835.32. Albrecht, M.; van Koten, G., Platinum group organometallics based on "Pincer"complexes: Sensors, switches, and catalysts. Angew. Chem. Int. Ed., 2001, 40 (20), 3750-3781.33. Hao, X.; Niu, J.; Zhao, X.; Gong, J.; Song, M., Development of Pincer Catalysts withSelected Group 8~10 Metals. Chinese J. Org. Chem., 2013, 33 (4).34. van Koten, G., The Monoanionic ECE-Pincer Ligand: A Versatile Privileged LigandPlatform—General Considerations. In Organometallic pincer chemistry, Springer: 2013;pp 1-20.35. Chase, P. A.; Gossage, R. A.; van Koten, G., Modern Organometallic MultidentateLigand Design Strategies: The Birth of the Privileged “Pincer” Ligand Platform. In ThePrivileged Pincer-Metal Platform: Coordination Chemistry & Applications, 2015; pp 1-15.36. Dobereiner, G. E.; Zhang, X.; Wang, H., Phosphine Ligand Development forHomogeneous Asymmetric Hydrogenation. Comprehensive Organometallic Chemistry IV.,2021.37. Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K.,Chiral and C2-symmetrical bis(oxazolinylpyridine)rhodium(III) complexes: effectivecatalysts for asymmetric hydrosilylation of ketones. Organometallics., 1989, 8 (3), 846-848.38. Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K., New chiral rutheniumbis (oxazolinyl) pyridine catalyst. Efficient asymmetric cyclopropanation of olefins withdiazoacetates. J. Am. Chem. Soc., 1994, 116 (5), 2223-2224.39. Cuervo, D.; Gamasa, M. P.; Gimeno, J., New chiral ruthenium(II) catalysts containing2,6-bis(4'-(R)-phenyloxazolin-2'-yl)pyridine (Ph-pybox) ligands for highlyenantioselective transfer hydrogenation of ketones. Chem., 2004, 10 (2), 425-32.40. Menendez-Pedregal, E.; Vaquero, M.; Lastra, E.; Gamasa, P.; Pizzano, A., Highlyenantioselective hydrogenation of N-aryl imines derived from acetophenones by using Rupybox complexes under hydrogenation or transfer hydrogenation conditions in isopropanol. Chem., 2015, 21 (2), 549-53.41. Claros, M.; de Julian, E.; Diez, J.; Lastra, E.; Gamasa, M. P., Asymmetric TransferHydrogenation of Arylketones Catalyzed by Enantiopure Ruthenium(II)/PyboxComplexes Containing Achiral Phosphonite and Phosphinite Ligands. Molecules., 2020,25 (4).42. Paredes, P.; Díez, J.; Gamasa, M. P., Synthesis of enantiopure iridium (I) and iridium(III) pybox complexes and their application in the asymmetric transfer hydrogenation ofketones. Organometallics., 2008, 27 (11), 2597-2607.43. de Julián, E.; Díez, J.; Lastra, E.; Gamasa, M. P., Iridium(I) complexes bearing the (S,S)- iPr-pybox ligand in the asymmetric transfer hydrogenation of acetophenone. J MolCatal A: Chem., 2014, 394, 295-302.44. Vega, E.; Lastra, E.; Gamasa, M. P., Asymmetric transfer hydrogenation of ketonescatalyzed by enantiopure osmium(II) pybox complexes. Inorg. Chem. 2013, 52 (10), 6193-8.45. de Julián, E.; Fernández, N.; Díez, J.; Lastra, E.; Gamasa, M. P., Osmium(II)/R-pyboxvs ruthenium(II)/R-pybox complexes in the catalytic asymmetric transfer hydrogenation of arylketones. Mol. Catal., 2018, 456, 75-86.46. Enthaler, S.; Hagemann, B.; Bhor, S.; Anilkumar, G.; Tse, M. K.; Bitterlich, B.;Junge, K.; Erre, G.; Beller, M., New Ruthenium Catalysts for Asymmetric TransferHydrogenation of Prochiral Ketones. Adv. Synth. Catal., 2007, 349 (6), 853-860.47. Ye, W.; Zhao, M.; Du, W.; Jiang, Q.; Wu, K.; Wu, P.; Yu, Z., Highly activeruthenium(II) complex catalysts bearing an unsymmetrical NNN ligand in the (asymmetric) transfer hydrogenation of ketones. Chem., 2011, 17 (17), 4737-41.48. Ye, W.; Zhao, M.; Yu, Z., Ruthenium(II) pyrazolyl-pyridyl-oxazolinyl complexcatalysts for the asymmetric transfer hydrogenation of ketones. Chem., 2012, 18 (35),10843-6.49. Chai, H.; Liu, T.; Yu, Z., NHTs Effect on the Enantioselectivity of Ru(II) ComplexCatalysts Bearing a Chiral Bis(NHTs)-Substituted Imidazolyl-Oxazolinyl-Pyridine Ligandfor Asymmetric Transfer Hydrogenation of Ketones. Organometallics., 2017, 36 (21),4136-4144.50. Jiang, Y.; Jiang, Q.; Zhang, X., A new chiral bis (oxazolinylmethyl) amine ligand forRu-catalyzed asymmetric transfer hydrogenation of ketones. J. Am. Chem. Soc., 1998, 120(15), 3817-3818.51. Li, W.; Hou, G.; Wang, C.; Jiang, Y.; Zhang, X., Asymmetric hydrogenation ofketones catalyzed by a ruthenium(II)-indan-ambox complex. Chem. Commun. 2010, 46(22), 3979-81.52. Johnson, T. C.; Totty, W. G.; Wills, M., Application of ruthenium complexes oftriazole-containing tridentate ligands to asymmetric transfer hydrogenation of ketones. Org. Lett., 2012, 14 (20), 5230-5233.53. Pellegrino, S.; Facchetti, G.; Gandolfi, R.; Fusè, M.; Erba, E.; Rimoldi, I.,Ruthenium(II) complexes bearing (NNN) ligand: catalytic evaluation of different solventmediated coordination modes. Can. J. Chem., 2018, 96 (1), 40-43.54. Ito, J.-i.; Nishiyama, H., Bifunctional Phebox Complexes for Asymmetric Catalysis. InBifunctional Molecular Catalysis, 2011; pp 185-205.55. Nishiyama, H.; Ito, J. I., Bis (oxazolinyl) phenyl transition metal complexes: synthesis,asymmetric catalysis, and coordination chemistry. Chem. Rec., 2007, 7 (3), 159-166.56. Ito, J.-i.; Sugino, K.; Matsushima, S.; Sakaguchi, H.; Iwata, H.; Ishihara, T.; Nishiyama, H., Synthesis of NHC-Oxazoline Pincer Complexes of Rh and Ru and Their CatalyticActivity for Hydrogenation and Conjugate Reduction. Organometallics., 2016, 35 (11),1885-1894.57. Baratta, W.; Bosco, M.; Chelucci, G.; Del Zotto, A.; Siega, K.; Toniutti, M.; Zangrando, E.; Rigo, P., Terdentate RuX (CNN)(PP)(X= Cl, H, OR) complexes: synthesis, properties, and catalytic activity in fast transfer hydrogenation. Organometallics., 2006, 25 (19), 4611-4620.58. Baratta, W.; Benedetti, F.; Del Zotto, A.; Fanfoni, L.; Felluga, F.; Magnolia, S.;Putignano, E.; Rigo, P., Chiral Pincer Ruthenium and Osmium Complexes for the Fast and Efficient Hydrogen Transfer Reduction of Ketones. Organometallics., 2010, 29 (16), 3563-3570.59. Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R., A chiral samarium-basedcatalyst for the asymmetric Meerwein-Ponndorf-Verley reduction. J. Am. Chem. Soc., 1993, 115 (21), 9800-9801.60. Jiang, Y.; Jiang, Q.; Zhu, G.; Zhang, X., New chiral ligands for catalytic asymmetrictransfer hydrogenation of ketones. Tetrahedron Lett., 1997, 38 (37), 6565-6568.61. Jiang, Y.; Jiang, Q.; Zhu, G.; Zhang, X., Highly effective NPN-type tridentate ligandsfor asymmetric transfer hydrogenation of ketones. Tetrahedron Lett., 1997, 38 (2), 215-218.62. Braunstein, P.; Naud, F.; Pfaltz, A.; Rettig, S. J., Ruthenium complexes with noveltridentate N, P, N ligands containing a phosphonite bridge between two chiral oxazolins.Catalytic activity in cyclopropanation of olefins and transfer hydrogenation ofacetophenone. Organometallics., 2000, 19 (14), 2676-2683.63. Brunner, H.; Niemetz, M., Enantioselective Catalysis CXLI
[1]. Tridentate Ligandswith 1-(Pyridin-2-yl) ethylamine as Chiral Building Block in the Enantioselective Transfer Hydrogenation of Acetophenone. Monatshefte für Chemie/Chemical Monthly., 2002, 133(2), 115-126.64. Longmire, J. M.; Zhang, X., Synthesis of chiral phosphine ligands with aromaticbackbones and their applications in asymmetric catalysis. Tetrahedron Lett., 1997, 38 (10), 1725-1728.65. Dani, P.; Karlen, T.; Gossage, R. A.; Gladiali, S.; van Koten, C., Hydrogen-transfercatalysis with pincer-aryl ruthenium(II) complexes. Angew. Chem. Int. Ed., 2000, 39 (4),743.66. Albrecht, M.; Kocks, B. M.; Spek, A. L.; van Koten, G., Chiral platinum and palladiumcomplexes containing functionalized C2-symmetric bisaminoaryl ‘Pincer’ligands. J.Organomet. Chem., 2001, 624 (1-2), 271-286.67. Medici, S.; Gagliardo, M.; Williams, S. B.; Chase, P. A.; Gladiali, S.; Lutz, M.; Spek,A. L.; van Klink, G. P.; van Koten, G., Novel P‐Stereogenic PCP Pincer‐Aryl Ruthenium(II) Complexes and Their Use in the Asymmetric Hydrogen Transfer Reaction ofAcetophenone. Helv. Chim. Acta., 2005, 88 (3), 694-705.68. Barbaro, P.; Bianchini, C.; Togni, A., Synthesis and characterization of ruthenium(II)complexes containing chiral bis(ferrocenyl)-P-3 or -P2S ligands. Asymmetric transferhydrogenation of acetophenone. Organometallics., 1997, 16 (13), 3004-3014.69. Barbaro, P.; Bianchini, C.; Giambastiani, G.; Togni, A., Ruthenium(II) Complexeswith Triphosphane Ligands Combining Planar, Phosphorus, and Carbon Chirality:Application to Asymmetric Reduction of Trifluoroacetophenone. Eur. J. Inorg. Chem.,2003, 2003 (23), 4166-4172.70. Tang, L.; Wang, Q.; Wang, J.; Lin, Z.; Wang, X.; Cun, L.; Yuan, W.; Zhu, J.; Liao,J.; Deng, J., A new chiral sulfinyl–NH–pyridine ligand for Ir-catalyzed asymmetric transfer hydrogenation reaction. Tetrahedron Lett., 2012, 53 (30), 3839-3842.71. Bao, D. H.; Wu, H. L.; Liu, C. L.; Xie, J. H.; Zhou, Q. L., Development of Chiral SpiroP-N-S Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of beta-Alkyl-beta-Ketoesters. Angew. Chem. Int. Ed., 2015, 54 (30), 8791-4.72. Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R., PracticalEnantioselective Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc., 1995, 117 (9),2675-2676.73. Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R., Stereoselectivehydrogenation of simple ketones catalyzed by Ruthenium (II) complexes. J. Org. Chem.,1996, 61 (15), 4872-4873.74. Ohkuma, T.; Ikehira, H.; Ikariya, T.; Noyori, R., Asymmetric hydrogenation of cyclicα, β-unsaturated ketones to chiral allylic alcohols. Synlett., 1997, 1997 (Sup. I), 467-468.75. Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.;England, A. F.; Ikariya, T.; Noyori, R., trans‐[RuCl2(phosphane)(1, 2‐diamine)] and Chiraltrans‐[RuCl2(diphosphane)(1, 2‐diamine)]: Shelf‐Stable Precatalysts for the Rapid,Productive, and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed., 1998,37 (12), 1703-1707.76. Ohkuma, T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori,R., Asymmetric activation of racemic ruthenium (II) complexes for enantioselectivehydrogenation. J. Am. Chem. Soc., 1998, 120 (5), 1086-1087.77. Noyori, R.; Koizumi, M.; Ishii, D.; Ohkuma, T., Asymmetric hydrogenation viaarchitectural and functional molecular engineering. Pure Appl. Chem., 2001, 73 (2), 227-232.78. Noyori, R.; Ohkuma, T., Asymmetric catalysis by architectural and functionalmolecular engineering: practical chemo‐and stereoselective hydrogenation of ketones.Angew. Chem. Int. Ed., 2001, 40 (1), 40-73.79. Noyori, R., Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew.Chem. Int. Ed., 2002, 41 (12), 2008-2022.80. Sandoval, C. A.; Shi, Q.; Liu, S.; Noyori, R., NH/pi attraction: a role in asymmetrichydrogenation of aromatic ketones with binap/1,2-diamine-ruthenium(II) complexes.Chem. Asian. J., 2009, 4 (8), 1221-4.81. Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris,R. H., Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido (diamine)ruthenium (II) complexes. J. Am. Chem. Soc., 2002, 124 (50), 15104-15118.82. Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori, R., General asymmetrichydrogenation of hetero-aromatic ketones. Org. Lett., 2000, 2 (12), 1749-1751.83. Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M., Asymmetric hydrogenationof tert-alkyl ketones: DMSO effect in unification of stereoisomeric ruthenium complexes. Angew. Chem. Int. Ed., 2013, 52 (35), 9313-5.84. Brunner, H.; Zettler, C.; Zabel, M., Asymmetric Catalysis. Part 149
[1]. Synthesis ofNew Chiral Tridentate Ligands for Enantioselective Catalysis. Monatsh. Chem., 2003,134 (9), 1253-1269.85. Flores-López, C. Z.; Flores-López, L. a. Z.; Aguirre, G.; Hellberg, L. H.; Parra-Hake,M.; Somanathan, R., Ruthenium(II)-assisted asymmetric hydrogen transfer reduction ofacetophenone using chiral tridentate phosphorus-containing ligands derived from (1R, 2R)-1,2-diaminocyclohexane. J Mol Catal A: Chem., 2004, 215 (1-2), 73-79.86. Clarke, M. L.; Diaz-Valenzuela, M. B.; Slawin, A. M. Z., Hydrogenation of aldehydes,esters, imines, and ketones catalyzed by a ruthenium complex of a chiral tridentate ligand. Organometallics., 2007, 26 (1), 16-19.87. Demmans, K. Z.; Olson, M. E.; Morris, R. H., Asymmetric Transfer Hydrogenation ofKetones with Well-Defined Manganese(I) PNN and PNNP Complexes. Organometallics.,2018, 37 (24), 4608-4618.88. Xie, J. H.; Liu, X. Y.; Xie, J. B.; Wang, L. X.; Zhou, Q. L., An additional coordinationgroup leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed., 2011, 50 (32), 7329-32.89. Chen, G. Q.; Lin, B. J.; Huang, J. M.; Zhao, L. Y.; Chen, Q. S.; Jia, S. P.; Yin, Q.;Zhang, X., Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann's Lactones with Molecular H2. J. Am. Chem. Soc., 2018, 140 (26), 8064-8068.90. Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.; Zhu, D.;Zhou, Q.-L.; Ding, K., Chiral cyclohexyl-fused spirobiindanes: practical synthesis, liganddevelopment, and asymmetric catalysis. J. Am. Chem. Soc., 2018, 140 (32), 10374-1031.91. Nie, H.; Zhou, G.; Wang, Q.; Chen, W.; Zhang, S., Asymmetric hydrogenation ofaromatic ketones using an iridium(I) catalyst containing ferrocene-based P–N–N tridentate ligands. Tetrahedron: Asymmetry., 2013, 24 (24), 1567-1571.92. Hou, C. J.; Hu, X. P., Sterically Hindered Chiral Ferrocenyl P,N,N-Ligands for HighlyDiastereo-/Enantioselective Ir-Catalyzed Hydrogenation of alpha-Alkyl-beta-ketoesters via Dynamic Kinetic Resolution. Org. Lett., 2016, 18 (21), 5592-5595.93. Wu, W.; Liu, S.; Duan, M.; Tan, X.; Chen, C.; Xie, Y.; Lan, Y.; Dong, X. Q.;Zhang, X., Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation ofSimple Ketones. Org. Lett., 2016, 18 (12), 2938-41.94. Zhang, F. H.; Wang, C.; Xie, J. H.; Zhou, Q. L., Synthesis of Tridentate Chiral SpiroAminophosphine−Oxazoline Ligands and Application to Asymmetric Hydrogenation of α‐Keto Amides. Adv. Synth. Catal., 2019, 361 (12), 2832-2835.95. Wei, D.-Q.; Chen, X.-S.; Hou, C.-J.; Hu, X.-P., Iridium-catalyzed asymmetrichydrogenation of β-keto esters with new phenethylamine-derived tridentate P,N,N-ligands. Synth. Commun., 2019, 49 (2), 237-243.96. Liang, Z.; Yang, T.; Gu, G.; Dang, L.; Zhang, X., Scope and Mechanism on Iridiumf-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones. Chin. J. Chem., 2018, 36(9), 851-856.97. Yu, J.; Long, J.; Yang, Y.; Wu, W.; Xue, P.; Chung, L. W.; Dong, X. Q.; Zhang,X., Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible andModular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands. Org. Lett., 2017,19 (3), 690-693.98. Yu, J.; Duan, M.; Wu, W.; Qi, X.; Xue, P.; Lan, Y.; Dong, X. Q.; Zhang, X., ReadilyAccessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol)Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones. Chem.,2017, 23 (4), 970-975.99. Zeng, L.; Yang, H.; Zhao, M.; Wen, J.; Tucker, J. H. R.; Zhang, X., C1-SymmetricPNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones:Reaction Scope and Enantioinduction Model. ACS Catal., 2020, 10 (23), 13794-13799.100. Ling, F.; Nian, S.; Chen, J.; Luo, W.; Wang, Z.; Lv, Y.; Zhong, W., Developmentof Ferrocene-Based Diamine-Phosphine-Sulfonamide Ligands for Iridium-CatalyzedAsymmetric Hydrogenation of Ketones. J. Org. Chem., 2018, 83 (18), 10749-10761.101. Ling, F.; Hou, H.; Chen, J.; Nian, S.; Yi, X.; Wang, Z.; Song, D.; Zhong, W.,Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese CatalyzedAsymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral PNN Tridentate Ligand. Org. Lett., 2019, 21 (11), 3937-3941.102. Ling, F.; Chen, J.; Nian, S.; Hou, H.; Yi, X.; Wu, F.; Xu, M.; Zhong, W.,Manganese-Catalyzed Enantioselective Hydrogenation of Simple Ketones Using anImidazole-Based Chiral PNN Tridentate Ligand. Synlett., 2020, 31 (03), 285-289.103. Zhang, L.; Tang, Y.; Han, Z.; Ding, K., Lutidine-Based Chiral Pincer ManganeseCatalysts for Enantioselective Hydrogenation of Ketones. Angew. Chem. Int. Ed., 2019,58 (15), 4973-4977.104. Császár, Z.; Szabó, E. Z.; Bényei, A. C.; Bakos, J.; Farkas, G., Chelate ring sizeeffects of Ir(P,N,N) complexes: Chemoselectivity switch in the asymmetric hydrogenation of α,β-unsaturated ketones. Catal. Commun., 2020, 146.105. Yang, H.; AlvarezGressier, M.; Lugan, N.; Mathieu, R., Ruthenium(II) complexescontaining optically active hemilabile P,N,O-tridentate ligands. Synthesis and evaluationin catalytic asymmetric transfer hydrogenation of acetophenone by propan-2-ol.Organometallics., 1997, 16 (7), 1401-1409.106. Kwong, H. L.; Lee, W. S.; Lai, T. S.; Wong, W. T., Ruthenium catalyzed asymmetrictransfer hydrogenation based on chiral P,N,O Schiff base ligands and crystal structure of a ruthenium(II) complex bearing chiral P,N,O Schiff base ligands. Inorg. Chem. Commun., 1999, 2 (2), 66-69.107. Alvarez, M.; Lugan, N.; Mathieu, R., Synthesis and evaluation of the bondingproperties of a potentially tridentate ligand: 1-(diphenylphosphino)-2-ethoxy-1-(2-pyridyl)ethane. J. Chem. Soc, Dalton Trans., 1994, (19), 2755-2760.108. Dai, H.; Hu, X.; Chen, H.; Bai, C.; Zheng, Z., New efficient P,N,O-tridentate ligandsfor Ru-catalyzed asymmetric transfer hydrogenation. Tetrahedron: Asymmetry., 2003, 14(11), 1467-1472.109. Phillips, S. D.; Fuentes, J. A.; Clarke, M. L., On the NH effect in ruthenium-catalysed hydrogenation of ketones: rational design of phosphine-amino-alcohol ligands forasymmetric hydrogenation of ketones. Chem., 2010, 16 (27), 8002-5.110. Altan, O.; Yılmaz, M. K., New phosphine-amino-alcohol tridentate ligands forruthenium catalyzed asymmetric transfer hydrogenation of ketones. J. Organomet. Chem., 2018, 861, 252-262.111. Junge, K.; Beller, M., Homogeneous Cobalt‐Catalysed Hydrogenation Reactions.Cobalt Catalysis in Organic Synthesis: Methods and Reactions., 2020, 25-66.112. Agbossou-Niedercorn, F.; Michon, C., Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coord. Chem. Rev., 2020, 425.113. Dub, P. A.; Gordon, J. C., The role of the metal-bound N–H functionality in Noyoritype molecular catalysts. Nat. Rev. Chem., 2018, 2 (12), 396-408.114. Alig, L.; Fritz, M.; Schneider, S., First-row transition metal (de) hydrogenationcatalysis based on functional pincer ligands. Chem. Rev., 2018, 119 (4), 2681-2751.115. Wei, D.; Darcel, C., Iron catalysis in reduction and hydrometalation reactions. Chem.Rev., 2018, 119 (4), 2550-2610.116. Burk, M. J.; Feaster, J. E.; Harlow, R. L., New chiral phospholanes; Synthesis,characterization, and use in asymmetric hydrogenation reactions. Tetrahedron:Asymmetry., 1991, 2 (7), 569-592.117. Abdur-Rashid, K., Transfer hydrogenation processes and catalysts. 2007. US Patent: US 20050107638 A1.118. Garbe, M.; Junge, K.; Walker, S.; Wei, Z.; Jiao, H.; Spannenberg, A.; Bachmann,S.; Scalone, M.; Beller, M., Manganese(I)-Catalyzed Enantioselective Hydrogenation ofKetones Using a Defined Chiral PNP Pincer Ligand. Angew. Chem. Int. Ed., 2017, 56 (37), 11237-11241.119. Garbe, M.; Wei, Z.; Tannert, B.; Spannenberg, A.; Jiao, H.; Bachmann, S.; Scalone,M.; Junge, K.; Beller, M., Enantioselective Hydrogenation of Ketones using DifferentMetal Complexes with a Chiral PNP Pincer Ligand. Adv. Synth. Catal., 2019, 361 (8),1913-1920.120. Arenas, I.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S., Synthesis of aPStereogenic PNPtBu,PhRuthenium Pincer Complex and Its Application in AsymmetricReduction of Ketones. Eur. J. Org. Chem., 2015, 2015 (17), 3666-3669.121. Yang, Z.; Wei, X.; Liu, D.; Liu, Y.; Sugiya, M.; Imamoto, T.; Zhang, W., PStereogenicpincer iridium complexes: Synthesis, structural characterization andapplication in asymmetric hydrogenation. J. Organomet. Chem., 2015, 791, 41-45.122. Huber, R.; Passera, A.; Mezzetti, A., Iron(II)-Catalyzed Hydrogenation ofAcetophenone with a Chiral, Pyridine-Based PNP Pincer Ligand: Support for an Outer-Sphere Mechanism. Organometallics., 2018, 37 (3), 396-405.123. Huber, R.; Passera, A.; Gubler, E.; Mezzetti, A., P-Stereogenic PN(H)P Iron(II)Catalysts for the Asymmetric Hydrogenation of Ketones: The Importance of Non-Covalent Interactions in Rational Ligand Design by Computation. Adv. Synth. Catal., 2018, 360 (15), 2900-2913.124. Bianchini, C.; Farnetti, E.; Glendenning, L.; Graziani, M.; Nardin, G.; Peruzzini,M.; Rocchini, E.; Zanobini, F., Synthesis of the New Chiral Aminodiphosphine Ligands(R)- and (S)-(.alpha.-Methylbenzyl)bis(2-(diphenylphosphino)ethyl)amine and Their Usein the Enantioselective Reduction of .alpha.,.beta.-Unsaturated Ketones to Allylic Alcohols by Iridium Catalysis. Organometallics 1995, 14 (3), 1489-1502.125. Jiang, Q. Z.; VanPlew, D.; Murtuza, S.; Zhang, X. M., Synthesis of (1R,1R')-2,6-bis1-(diphenylphosphino)ethyl pyridine and its application in asymmetric transferhydrogenation. Tetrahedron Lett., 1996, 37 (6), 797-800.126. Dai, H.; Hu, X.; Chen, H.; Bai, C.; Zheng, Z., New chiral ferrocenyldiphosphineligand for catalytic asymmetric transfer hydrogenation. J. Mol. Catal. A: Chem.2004, 209(1-2), 19-22.127. Kuriyama, W.; Matsumoto, T.; Ino, Y.; Ogata, O. Novel ruthenium carbonyl complexhaving a tridentate ligand and manufacturing method and usage therefor. Patent, WO2011048727A1.128. Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris,R. H., Iron(II) complexes containing unsymmetrical P-N-P' pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines. J. Am. Chem. Soc., 2014, 136 (4), 1367-80.129. Sonnenberg, J. F.; Lough, A. J.; Morris, R. H., Synthesis of Iron P-N-P′ and P-NHP′Asymmetric Hydrogenation Catalysts. Organometallics., 2014, 33 (22), 6452-6465.130. Smith, S. A. M.; Lagaditis, P. O.; Lupke, A.; Lough, A. J.; Morris, R. H.,Unsymmetrical Iron P-NH-P' Catalysts for the Asymmetric Pressure Hydrogenation ofAryl Ketones. Chem., 2017, 23 (30), 7212-7216.131. Zirakzadeh, A.; Kirchner, K.; Roller, A.; Stöger, B.; Widhalm, M.; Morris, R. H.,Iron(II) Complexes Containing Chiral Unsymmetrical PNP′ Pincer Ligands: Synthesis andApplication in Asymmetric Hydrogenations. Organometallics., 2016, 35 (21), 3781-3787.132. Zhang, F.-H.; Zhang, F.-J.; Li, M.-L.; Xie, J.-H.; Zhou, Q.-L., Enantioselectivehydrogenation of dialkyl ketones. Nat. Catal., 2020, 3 (8), 621-627.133. Wang, H.; Wen, J.; Zhang, X., Chiral tridentate ligands in transition metal-catalyzedasymmetric hydrogenation. Chem. Rev., 2021, 121 (13), 7530-7567.134. Baratta, W.; Chelucci, G.; Magnolia, S.; Siega, K.; Rigo, P., Highly productive CNNpincer ruthenium catalysts for the asymmetric reduction of alkyl aryl ketones. Chem., 2009, 15 (3), 726-32.135. Baratta, W.; Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette, M.;Zangrando, E.; Rigo, P., Ruthenium(II) terdentate CNN complexes: superlative catalystsfor the hydrogen-transfer reduction of ketones by reversible insertion of a carbonyl group into the Ru-H bond. Angew. Chem. Int. Ed., 2005, 44 (38), 6214-9.136. Baratta, W.; Siega, K.; Rigo, P., Catalytic transfer hydrogenation with terdentateCNN ruthenium complexes: the influence of the base. Chem., 2007, 13 (26), 7479-86.137. Baratta, W.; Ballico, M.; Baldino, S.; Chelucci, G.; Herdtweck, E.; Siega, K.;Magnolia, S.; Rigo, P., New benzo[h]quinoline-based ligands and their pincer Ru and Oscomplexes for efficient catalytic transfer hydrogenation of carbonyl compounds. Chem.,2008, 14 (30), 9148-60.138. Baratta, W.; Baldino, S.; Calhorda, M. J.; Costa, P. J.; Esposito, G.; Herdtweck,E.; Magnolia, S.; Mealli, C.; Messaoudi, A.; Mason, S. A.; Veiros, L. F., CNN pincerruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies. Chem., 2014, 20 (42), 13603-17.139. Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P., Osmium(II) CNN pincercomplexes as efficient catalysts for both asymmetric transfer and H2 hydrogenation ofketones. Angew. Chem. Int. Ed., 2008, 47 (23), 4362-5.140. Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K., A family of active iridium catalysts for transfer hydrogenation of ketones.Organometallics., 2006, 25 (17), 4113-4117.141. Zirakzadeh, A.; de Aguiar, S. R. M. M.; Stöger, B.; Widhalm, M.; Kirchner, K.,Enantioselective Transfer Hydrogenation of Ketones Catalyzed by a Manganese Complex Containing an Unsymmetrical Chiral PNP′ Tridentate Ligand. ChemCatChem., 2017, 9(10), 1744-1748.142. Ito, J.-i.; Ujiie, S.; Nishiyama, H., New Bis (oxazolinyl) phenyl− Ruthenium (II)Complexes and Their Catalytic Activity for Enantioselective Hydrogenation and TransferHydrogenation of Ketones. Organometallics., 2009, 28 (2), 630-638.143. Ito, J.; Teshima, T.; Nishiyama, H., Enhancement of enantioselectivity by alcoholadditives in asymmetric hydrogenation with bis(oxazolinyl)phenyl ruthenium catalysts.Chem. Commun., 2012, 48 (8), 1105-7.144. Phillips, S. D.; Andersson, K. H. O.; Kann, N.; Kuntz, M. T.; France, M. B.;Wawrzyniak, P.; Clarke, M. L., Exploring the role of phosphorus substituents on theenantioselectivity of Ru-catalysed ketone hydrogenation using tridentate phosphinediamine ligands. Catal. Sci. Technol., 2011, 1 (8).145. Choualeb, A.; Lough, A. J.; Gusev, D. G., Hemilabile pincer-type hydride complexesof iridium. Organometallics., 2007, 26 (21), 5224-5229.146. Prokopchuk, D. E.; Smith, S. A.; Morris, R. H., Ligands for iron-based homogeneouscatalysts for the asymmetric hydrogenation of ketones and imines. Ligand Design in Metal Chemistry: Reactivity and Catalysis., 2016, 205-236.147. Wen, J.; Wang, F.; Zhang, X., Asymmetric hydrogenation catalyzed by first-rowtransition metal complexes. Chem. Soc. Rev., 2021, 50, 3211-3237.148. Wang, Y.; Wang, M.; Li, Y.; Liu, Q., Homogeneous manganese-catalyzedhydrogenation and dehydrogenation reactions. Chem., 2020, 7(5), 1180-1223.149. Agbossou-Niedercorn, F.; Michon, C., Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coord. Chem. Rev., 2020, 425, 213523.150. Liu, W.; Sahoo, B.; Junge, K.; Beller, M., Cobalt complexes as an emerging class ofcatalysts for homogeneous hydrogenations. Acc. Chem. Res., 2018, 51 (8), 1858-1869.151. Hirsekorn, K. F.; Hulley, E. B.; Wolczanski, P. T.; Cundari, T. R., Olefin Substitutionin (silox) 3M (olefin)(silox= tBu3SiO; M= Nb, Ta): The Role of Density of States in Second vs Third Row Transition Metal Reactivity. J. Am. Chem. Soc., 2008, 130 (4), 1183-1196.152. Sui‐Seng, C.; Freutel, F.; Lough, A. J.; Morris, R. H., Highly efficient catalystsystems using iron complexes with a tetradentate PNNP ligand for the asymmetrichydrogenation of polar bonds. Angew. Chem. Int. Ed., 2008, 47 (5), 940-943.153. Mikhailine, A.; Lough, A. J.; Morris, R. H., Efficient asymmetric transferhydrogenation of ketones catalyzed by an iron complex containing a P−N−N−Ptetradentate ligand formed by template synthesis. J. Am. Chem. Soc., 2009, 131 (4), 1394-1395.154. Lagaditis, P. O.; Lough, A. J.; Morris, R. H., Low-valent ene–amido iron complexesfor the asymmetric transfer hydrogenation of acetophenone without base. J. Am. Chem.Soc., 2011, 133 (25), 9662-9665.155. Sues, P. E.; Lough, A. J.; Morris, R. H., Stereoelectronic factors in iron catalysis:synthesis and characterization of aryl-substituted iron (II) carbonyl P–N–N–P complexes and their use in the asymmetric transfer hydrogenation of ketones. Organometallics., 2011, 30 (16), 4418-4431.156. Mikhailine, A. A.; Maishan, M. I.; Lough, A. J.; Morris, R. H., The Mechanism ofEfficient Asymmetric Transfer Hydrogenation of Acetophenone Using an Iron (II)Complex Containing an (S, S)-Ph2PCH2CH=NCHPhCHPhN=CHCH2PPh2 Ligand: Partial Ligand Reduction Is the Key. Journal of the American Chemical Society 2012, 134 (29),12266-12280.157. Prokopchuk, D. E.; Morris, R. H., Inner-sphere activation, outer-sphere catalysis:theoretical study on the mechanism of transfer hydrogenation of ketones using iron (II)PNNP eneamido complexes. Organometallics., 2012, 31 (21), 7375-7385.158. Prokopchuk, D. E.; Sonnenberg, J. F.; Meyer, N.; Zimmer-De Iuliis, M.; Lough, A.J.; Morris, R. H., Spectroscopic and DFT Study of Ferraaziridine Complexes Formed inthe Transfer Hydrogenation of Acetophenone Catalyzed Using trans-[Fe(CO)(NCMe)(PPh2C6H4CH=NCH2−)2-κ4 P, N, N, P](BF4)2. Organometallics., 2012, 31(8), 3056-3064.159. Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H., Amine (imine) diphosphine ironcatalysts for asymmetric transfer hydrogenation of ketones and imines. Science., 2013, 342(6162), 1080-1083.160. Sonnenberg, J. F.; Wan, K. Y.; Sues, P. E.; Morris, R. H., Ketone AsymmetricHydrogenation Catalyzed by P-NH-P′ Pincer Iron Catalysts: An Experimental andComputational Study. ACS Catal., 2016, 7 (1), 316-326.161. Elangovan, S.; Garbe, M.; Jiao, H.; Spannenberg, A.; Junge, K.; Beller, M.,Hydrogenation of esters to alcohols catalyzed by defined manganese pincer complexes.Angew. Chem. Int. Ed., 2016, 128 (49), 15590-15594.162. Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.; Baumann, W.;Ludwig, R.; Junge, K.; Beller, M., Selective catalytic hydrogenations of nitriles, ketones,and aldehydes by well-defined manganese pincer complexes. J. Am. Chem. Soc., 2016, 138(28), 8809-8814.163. Widegren, M. B.; Harkness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L.,A Highly Active Manganese Catalyst for Enantioselective Ketone and EsterHydrogenation. Angew. Chem. Int. Ed., 2017, 56 (21), 5825-5828.164. Passera, A.; Mezzetti, A., Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenationof Ketones: A Comparison by Experiment and Calculation. Adv. Synth. Catal., 2019, 361(20), 4691-4706.165. Zhang, Q.-Q.; Xie, J.-H.; Yang, X.-H.; Xie, J.-B.; Zhou, Q.-L., Iridium-CatalyzedAsymmetric Hydrogenation of alpha-Substituted alpha,beta-Unsaturated Acyclic Ketones: Enantioselective Total Synthesis of (-)-Mesembrine. Org. Lett., 2012, 14 (24), 6158-6161.166. Liu, Y. T.; Chen, J. Q.; Li, L. P.; Shao, X. Y.; Xie, J. H.; Zhou, Q. L., AsymmetricHydrogenation of Tetrasubstituted Cyclic Enones to Chiral Cycloalkanols with ThreeContiguous Stereocenters. Org. Lett., 2017, 19 (12), 3231-3234.167. Zuo, X. D.; Guo, S. M.; Yang, R.; Xie, J. H.; Zhou, Q. L., Asymmetric TotalSynthesis of Gracilamine and Determination of Its Absolute Configuration. Org. Lett.,2017, 19 (19), 5240-5243.168. Zuo, X. D.; Guo, S. M.; Yang, R.; Xie, J. H.; Zhou, Q. L., Bioinspiredenantioselective synthesis of crinine-type alkaloids via iridium-catalyzed asymmetrichydrogenation of enones. Chem. Sci., 2017, 8 (9), 6202-6206.169. Yan, P.-C.; Zhu, G.-L.; Xie, J.-H.; Zhang, X.-D.; Zhou, Q.-L.; Li, Y.-Q.; Shen,W.-H.; Che, D.-Q., Industrial Scale-Up of Enantioselective Hydrogenation for theAsymmetric Synthesis of Rivastigmine. Org. Process Res. Dev., 2013, 17 (2), 307-312.170. Qian, J.-Q.; Yan, P.-C.; Che, D.-Q.; Zhou, Q.-L.; Li, Y.-Q., A novel approach forthe synthesis of Crizotinib through the key chiral alcohol intermediate by asymmetrichydrogenation using highly active Ir-Spiro-PAP catalyst. Tetrahedron Lett., 2014, 55 (9),1528-1531.171. Yan, P. C.; Xie, J. H.; Zhang, X. D.; Chen, K.; Li, Y. Q.; Zhou, Q. L.; Che, D. Q.,Direct asymmetric hydrogenation of alpha-keto acids by using the highly efficient chiralspiro iridium catalysts. Chem. Commun., 2014, 50 (100), 15987-90.172. Yang, X.-H.; Xie, J.-H.; Zhou, Q.-L., Chiral spiro iridium catalysts with SpiroPAPligands: highly efficient for asymmetric hydrogenation of ketones and ketoesters.Org. Chem. Front., 2014, 1 (2).173. Yang, X. H.; Xie, J. H.; Liu, W. P.; Zhou, Q. L., Catalytic asymmetric hydrogenationof delta-ketoesters: highly efficient approach to chiral 1,5-diols. Angew. Chem. Int. Ed.,2013, 52 (30), 7833-6.174. Yang, X. H.; Wang, K.; Zhu, S. F.; Xie, J. H.; Zhou, Q. L., Remote ester group leadsto efficient kinetic resolution of racemic aliphatic alcohols via asymmetric hydrogenation. J. Am. Chem. Soc., 2014, 136 (50), 17426-9.175. Zhang, Y. M.; Yuan, M. L.; Liu, W. P.; Xie, J. H.; Zhou, Q. L., Iridium-CatalyzedAsymmetric Transfer Hydrogenation of Alkynyl Ketones Using Sodium Formate andEthanol as Hydrogen Sources. Org. Lett., 2018, 20 (15), 4486-4489.176. Zhu, G.-L.; Zhang, X.-D.; Yang, L.-J.; Xie, J.-H.; Che, D.-Q.; Zhou, Q.-L.; Yan,P.-C.; Li, Y.-Q., Ir/SpiroPAP Catalyzed Asymmetric Hydrogenation of a Key Intermediate of Montelukast: Process Development and Potential Impurities Study. Org. Process Res. Dev., 2015, 20 (1), 81-85.177. Hua, Y. Y.; Bin, H. Y.; Wei, T.; Cheng, H. A.; Lin, Z. P.; Fu, X. F.; Li, Y. Q.;Xie, J. H.; Yan, P. C.; Zhou, Q. L., Iridium-Catalyzed Asymmetric Hydrogenation ofgamma- and delta-Ketoacids for Enantioselective Synthesis of gamma- and delta-Lactones. Org. Lett., 2020, 22 (3), 818-822.178. Lin, H.; Xiao, L. J.; Zhou, M. J.; Yu, H. M.; Xie, J. H.; Zhou, Q. L., EnantioselectiveApproach to (-)-Hamigeran B and (-)-4-Bromohamigeran B via Catalytic AsymmetricHydrogenation of Racemic Ketone To Assemble the Chiral Core Framework. Org. Lett.,2016, 18 (6), 1434-7.179. Yang, X. H.; Yue, H. T.; Yu, N.; Li, Y. P.; Xie, J. H.; Zhou, Q. L., Iridium-catalyzedasymmetric hydrogenation of racemic alpha-substituted lactones to chiral diols. Chem. Sci., 2017, 8 (3), 1811-1814.180. Gu, X. S.; Yu, N.; Yang, X. H.; Zhu, A. T.; Xie, J. H.; Zhou, Q. L., EnantioselectiveHydrogenation of Racemic alpha-Arylamino Lactones to Chiral Amino Diols with Site-Specifically Modified Chiral Spiro Iridium Catalysts. Org. Lett., 2019, 21 (11), 4111-4115.181. Gu, G.; Yang, T.; Yu, O.; Qian, H.; Wang, J.; Wen, J.; Dang, L.; Zhang, X.,Enantioselective Iridium-Catalyzed Hydrogenation of alpha-Keto Amides to alpha-Hydroxy Amides. Org. Lett., 2017, 19 (21), 5920-5923.182. Hu, Y.; Wu, W.; Dong, X.-Q.; Zhang, X., Efficient access to chiral 1,2-aminoalcohols via Ir/f-amphox-catalyzed asymmetric hydrogenation of α-amino ketones.Org. Chem. Front., 2017, 4 (8), 1499-1502.183. Wu, W.; Xie, Y.; Li, P.; Li, X.; Liu, Y.; Dong, X.-Q.; Zhang, X., Asymmetrichydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols. Org. Chem. Front., 2017, 4 (4), 555-559.184. Wu, W.; You, C.; Yin, C.; Liu, Y.; Dong, X. Q.; Zhang, X., Enantioselective andDiastereoselective Construction of Chiral Amino Alcohols by Iridium-f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution. Org. Lett., 2017,19 (10), 2548-2551.185. Hu, Y.; Yin, X.; Chen, Z.; Dong, X.-Q.; Zhang, X., Highly enantioselective Ir/famphox-catalyzed hydrogenation of ketoamides: efficient access to chiral hydroxy amides.Org. Chem. Front., 2018, 5 (12), 2000-2003.186. Qin, C.; Chen, X.-S.; Hou, C.-J.; Liu, H.; Liu, Y.-J.; Huang, D.-Z.; Hu, X.-P.,Iridium-catalyzed asymmetric hydrogenation of β-keto esters with f-amphox ligands. Synth. Commun., 2018, 48 (6), 672-676.187. Yin, C.; Dong, X.-Q.; Zhang, X., Iridium/f-Amphol-catalyzed Efficient AsymmetricHydrogenation of Benzo-fused Cyclic Ketones. Advanced Synthesis & Catalysis 2018, 360(22), 4319-4324.188. Yin, C.; Wu, W.; Hu, Y.; Tan, X.; You, C.; Liu, Y.; Chen, Z.; Dong, X.-Q.; Zhang,X., Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for theEfficient Construction of Chiral Halohydrins. Adv. Synth. Catal., 2018, 360 (11), 2119-2124.189. Zhang, X.; Wen, J.; Wang, S.; Yu, Y., Iridium/f-Amphox-Catalyzed AsymmetricHydrogenation of Styrylglyoxylamides. Synlett 2018, 29 (16), 2203-2207.190. Wang, J.; Shao, P. L.; Lin, X.; Ma, B.; Wen, J.; Zhang, X., Facile Synthesis ofEnantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic ResolutionCombined. Angew. Chem. Int. Ed., 2020, 59 (41), 18166-18171.191. Gong, Q.; Wen, J.; Zhang, X., Desymmetrization of cyclic 1,3-diketones via Ircatalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiralquaternary carbon. Chem. Sci., 2019, 10 (25), 6350-6353.
修改评论