[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methodsfor ill-posed problems, Inverse Problems, 10 (1994), pp. 1217–1229.
[2] E. Bae, X.-C. Tai, and W. Zhu, Augmented lagrangian method for anEuler’s elastica based segmentation model that promotes convex contours,Inverse Problems & Imaging, 11 (2017), pp. 1–23.
[3] A. R. Barron, Universal approximation bounds for superpositions of asigmoidal function, IEEE Transactions on Information Theory, 39 (1993),pp. 930–945.
[4] Y. Boykov, O. Veksler, and R. Zabih, Markov random fieldswith efficient approximations, in Proceedings. 1998 IEEE Computer SocietyConference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), IEEE, 1998, pp. 648–655.
[5] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energyminimization via graph cuts, IEEE Transactions on Pattern Analysis andMachine Intelligence, 23 (2001), pp. 1222 – 1239.
[6] Z. Cai, J. Chen, M. Liu, and X. Liu, Deep least-squares methods:An unsupervised learning-based numerical method for solving elliptic pdes,Journal of Computational Physics, 420 (2020), p. 109707.
[7] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick,First-order system least squares for second-order partial differential equations:Part i, SIAM Journal on Numerical Analysis, 31 (1994), pp. 1785–1799.
[8] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, andT. Pock, An introduction to total variation for image analysis, TheoreticalFoundations and Numerical Methods for Sparse Recovery, 9 (2010),p. 227.
[9] T. Chan and L. Vese, An active contour model without edges, inInternational Conference on Scale-Space Theories in Computer Vision,Springer, 1999, pp. 141–151.
[10] T. F. Chan and L. A. Vese, Active contours without edges, IEEETransactions on Image Processing, 10 (2001), pp. 266–277.
[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao,L. Yi, and F. Yu, ShapeNet: An Information-Rich 3D Model Repository,Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford University — PrincetonUniversity — Toyota Technological Institute at Chicago, 2015.
[12] B. Chazelle, On the convex layers of a planar set, IEEE Transactionson Information Theory, 31 (1985), pp. 509–517.
[13] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud,Neural ordinary differential equations, arXiv preprint arXiv:1806.07366,(2018).
[14] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscositysolutions of second order partial differential equations, Bulletin of theAmerican Mathematical Society, 27 (1992), pp. 1–67.
[15] G. Cybenko, Approximation by superpositions of a sigmoidal function,Mathematics of Control, Signals and Systems, 2 (1989), pp. 303–314.
[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformersfor image recognition at scale, in International Conference onLearning Representations, 2020.
[17] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods foronline learning and stochastic optimization., Journal of Machine LearningResearch, 12 (2011), pp. 2121–2159.
[18] S. Geman and D. Geman, Stochastic relaxation, gibbs distributions,and the bayesian restoration of images, IEEE Transactions on PatternAnalysis and Machine Intelligence, 6 (1984), pp. 721–741.
[19] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics:theory and application to non-spherical stars, Monthly Notices of theRoyal Astronomical Society, 181 (1977), pp. 375–389.
[20] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deeplearning, MIT Press Cambridge, 2016.
[21] L. Gorelick, O. Vekslar, Y. Boykov, and C. Nieuwenhuis, Convexityshape prior for binary segmentation, IEEE Transactions on PatternAnalysis and Machine Intelligence, 39 (2017), pp. 258–270.
[22] L. Gorelick and O. Veksler, Multi-object convexity shape prior forsegmentation, in International Workshop on Energy Minimization Methodsin Computer Vision and Pattern Recognition, Springer, 2017, pp. 455–468.
[23] L. Gorelick, O. Veksler, Y. Boykov, and C. Nieuwenhuis, Convexityshape prior for segmentation, in European Conference on ComputerVision, Springer, 2014, pp. 675–690.
[24] J. Han, A. Jentzen, and E. Weinan, Solving high-dimensional partialdifferential equations using deep learning, Proceedings of the NationalAcademy of Sciences, 115 (2018), pp. 8505–8510.
[25] A. Harsh, J. E. Ball, and P. Wei, Onion-peeling outlier detectionin 2-d data sets, arXiv Preprint arXiv:1803.04964, (2018).
[26] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning forimage recognition, in Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, 2016, pp. 770–778.
[27] C. F. Higham and D. J. Higham, Deep learning: An introduction forapplied mathematicians, SIAM Review, 61 (2019), pp. 860–891.
[28] N. J. Higham, Matrix Nearness Problems and Applications, Citeseer,1988.
[29] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, andR. R. Salakhutdinov, Improving neural networks by preventing coadaptationof feature detectors, arXiv preprint arXiv:1207.0580, (2012).
[30] S. Hochreiter and J. Schmidhuber, Long short-term memory, NeuralComputation, 9 (1997), pp. 1735–1780.
[31] K. Hornik, M. Stinchcombe, H. White, et al., Multilayer feedforwardnetworks are universal approximators., Neural Networks, 2 (1989),pp. 359–366.
[32] H. Isack, O. Veksler, M. Sonka, and Y. Boykov, Hedgehog shapepriors for multi-object segmentation, in IEEE Conference on ComputerVision and Pattern Recognition, 2016, pp. 2434–2442.
[33] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, andK. H. Maier-Hein, Brain tumor segmentation and radiomics survivalprediction: Contribution to the brats 2017 challenge, in InternationalMICCAI Brainlesion Workshop, Springer, 2017, pp. 287–297.
[34] T. Karras, S. Laine, and T. Aila, A style-based generator architecturefor generative adversarial networks, in Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition, 2019, pp. 4401–4410.
[35] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,in 3rd International Conference on Learning Representations, ICLR2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,Y. Bengio and Y. LeCun, eds., 2015.
[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classificationwith deep convolutional neural networks, in Advances in NeuralInformation Processing Systems, vol. 25, 2012.
[37] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,W. Hubbard, and L. Jackel, Handwritten digit recognition with aback-propagation network, Advances in Neural Information ProcessingSystems, 2 (1989).
[38] L. Li, S. Luo, X.-C. Tai, and J. Yang, Convex hull algorithms basedon some variational models, arXiv preprint arXiv:1908.03323, (2019).
[39] L. Li, S. Luo, X.-C. Tai, and J. Yang, A level set representationmethod for n-dimensional convex shape and applications, Communicationsin Mathematical Research, 37 (2021), pp. 180–208.
[40] L. Li, X.-C. Tai, and J. Yang, Generalization error analysisof neural networks with gradient based regularization, arXiv preprintarXiv:2107.02797, (2021).
[41] L. Li, X.-C. Tai, J. Yang, and Q. Zhu, Priori error analysisof deep mixed residual method for elliptic pdes, Preprint:http://dx.doi.org/10.13140/RG.2.2.21143.65446, (2022).
[42] Z. Liu, Multi-scale deep neural network (mscalednn) for solving poissonboltzmannequation in complex domains, Communications in ComputationalPhysics, 28 (2020), pp. 1970–2001.
[43] Z. Liu, D. W. Jacobs, and R. Basri, The role of convexity in perceptualcompletion: Beyond good continuation., Vision Research, 39 (1999),pp. 4244–4257.
[44] J. Lu, Y. Lu, and M. Wang, A priori generalization analysis of thedeep ritz method for solving high dimensional elliptic equations, arXivpreprint arXiv:2101.01708, (2021).
[45] S. Luo and X.-C. Tai, Convex shape priors for level set representation,arXiv preprint arXiv:1811.04715, (2018).
[46] S. Luo, X.-C. Tai, L. Huo, Y. Wang, and R. Glowinski, Convexshape prior for multi-object segmentation using a single level set function,in Proceedings of the IEEE International Conference on Computer Vision,2019, pp. 613–621.
[47] L. Lyu, K. Wu, R. Du, and J. Chen, Enforcing exact boundaryand initial conditions in the deep mixed residual method, arXiv preprintarXiv:2008.01491, (2020).
[48] L. Lyu, Z. Zhang, M. Chen, and J. Chen, Mim: A deep mixedresidual method for solving high-order partial differential equations, arXivpreprint arXiv:2006.04146, (2020).
[49] C. Ma, L. Wu, et al., Barron spaces and the compositional functionspaces for neural network models, arXiv preprint arXiv:1906.08039,(2019).
[50] Y. L. Ming et al., Deep nitsche method: Deep ritz method with essentialboundary conditions, Communications in Computational Physics, 29(2021), pp. 1365–1384.
[51] M. Minsky and S. Papert, Perceptrons., MIT press, 1969.
[52] S. Mishra and R. Molinaro, Estimates on the generalization error ofphysics informed neural networks (pinns) for approximating pdes, SAMResearch Report, 2020 (2020).
[53] , Estimates on the generalization error of physics informed neuralnetworks (pinns) for approximating pdes ii: A class of inverse problems,SAM Research Report, 2020 (2020).
[54] D. Mumford and J. Shah, Optimal approximations by piecewisesmooth functions and associated variational problems, Communicationson Pure and Applied Mathematics, 42 (1989), pp. 577–685.
[55] J. M¨uller and M. Zeinhofer, Error estimates for the variationaltraining of neural networks with boundary penalty, arXiv preprintarXiv:2103.01007, (2021).
[56] S. Osher and R. Fedkiw, Level Set Methods and Dynamic ImplicitSurfaces, vol. 153, Springer Science & Business Media, 2002.
[57] S. Osher and R. Fedkiw, Level set methods and dynamic implicitsurfaces, vol. 153 of Applied Mathematical Sciences, Springer-Verlag, NewYork, 2003.
[58] R. B. Potts, Some generalized order-disorder transformations, MathematicalProceedings of the Cambridge Philosophical Society, 48 (1952),pp. 106–109.
[59] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physicsinformedneural networks: A deep learning framework for solving forwardand inverse problems involving nonlinear partial differential equations,Journal of Computational Physics, 378 (2019), pp. 686–707.
[60] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutionalnetworks for biomedical image segmentation, in International Conferenceon Medical image computing and computer-assisted intervention,Springer, 2015, pp. 234–241.
[61] F. Rosenblatt, The perceptron: a probabilistic model for informationstorage and organization in the brain., Psychological Review, 65 (1958),p. 386.
[62] G. Rosman, Y. Wang, X.-C. Tai, R. Kimmel, and A. M. Bruckstein,Fast regularization of matrix-valued images, in Efficient Algorithmsfor Global Optimization Methods in Computer Vision, Springer, 2014,pp. 19–43.
[63] L. A. Royer, D. L. Richmond, C. Rother, B. Andres, andD. Kainmueller, Convexity shape constraints for image segmentation,in Proceedings of the IEEE Conference on Computer Vision and PatternRecognition, 2016, pp. 402–410.
[64] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation basednoise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992),pp. 259–268.
[65] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learningrepresentations by back-propagating errors, Nature, 323 (1986), pp. 533–536.
[66] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge,International Journal of Computer Vision, 115 (2015), pp. 211–252.
[67] J. W. Siegel and J. Xu, Approximation rates for neural networks withgeneral activation functions, Neural Networks, 128 (2020), pp. 313–321.
[68] K. Simonyan and A. Zisserman, Very deep convolutional networks forlarge-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
[69] J. Sirignano and K. Spiliopoulos, Dgm: A deep learning algorithmfor solving partial differential equations, Journal of ComputationalPhysics, 375 (2018), pp. 1339–1364.
[70] E. Strekalovskiy and D. Cremers, Generalized ordering constraintsfor multilabel optimization, in 2011 International Conference on ComputerVision, IEEE, 2011, pp. 2619–2626.
[71] M. Sussman, P. Smereka, and S. Osher, A level set approach forcomputing solutions to incompressible two-phase flow, Journal of ComputationalPhysics, 114 (1994), pp. 146–159.
[72] E. Ukwatta, J. Yuan, W. Qiu, M. Rajchl, and A. Fenster,Efficient convex optimization-based curvature dependent contour evolutionapproach for medical image segmentation, in Medical Imaging 2013: ImageProcessing, vol. 8669, 2013, pp. 866–902.
[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all youneed, in Advances in Neural Information Processing Systems, vol. 30,2017.
[74] O. Veksler, Star shape prior for graph-cut image segmentation, in EuropeanConference on Computer Vision, Springer, 2008, pp. 454–467.
[75] L. A. Vese and T. F. Chan, A multiphase level set framework forimage segmentation using the Mumford and Shah model, InternationalJournal of Computer Vision, 50 (2002), pp. 271–293.
[76] S. Vicente, V. Kolmogorov, and C. Rother, Graph cut basedimage segmentation with connectivity priors, in 2008 IEEE Conference onComputer Vision and Pattern Recognition, IEEE, 2008, pp. 1–8.
[77] B. Wang, Multi-scale deep neural network (mscalednn) methods for oscillatorystokes flows in complex domains, Communications in ComputationalPhysics, 28 (2020), pp. 2139–2157.
[78] E. Weinan, Machine learning and computational mathematics, Communicationsin Computational Physics, 28 (2020), pp. 1639–1670.
[79] E. Weinan and B. Yu, The deep Ritz method: A deep learning-basednumerical algorithm for solving variational problems, Communications inMathematics and Statistics, 6 (2018), pp. 1–12.
[80] S. Yan, X.-C. Tai, J. Liu, and H.-Y. Huang, Convexity shapeprior for level set based image segmentation method, arXiv PreprintarXiv:1805.08676, (2018).
[81] C. Yang, X. Shi, D. Yao, and C. Li, A level set method for convexitypreserving segmentation of cardiac left ventricle, in InternationalConference on Image Processing, 2017, pp. 2159–2163.
[82] J. Yuan, W. Qiu, E. Ukwatta, M. Rajchl, Y. Sun, and A. Fenster,An efficient convex optimization approach to 3d prostate mri segmentationwith generic star shape prior, Prostate MR Image SegmentationChallenge, MICCAI, 7512 (2012), pp. 82–89.
[83] D.-X. Zhou, Universality of deep convolutional neural networks, Appliedand Computational Harmonic Analysis, 48 (2020), pp. 787–794.
[84] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired imageto-image translation using cycle-consistent adversarial networks, in Pro-ceedings of the IEEE International Conference on Computer Vision, 2017,pp. 2223–2232.
[85] Q. Zhu and J. Yang, A local deep learning method for solving high orderpartial differential equations, arXiv preprint arXiv:2103.08915, (2021).
修改评论