中文版 | English
题名

氧化锆陶瓷的切向超声辅助镜面磨削研究

其他题名
RESEARCH ON TANGENTIAL ULTRASONIC ASSISTED MIRROR SURFACE GRINDING OF ZIRCONIA CERAMICS
姓名
姓名拼音
QIAO Jiaping
学号
11749328
学位类型
博士
学位专业
0802 机械工程
学科门类/专业学位类别
08 工学
导师
吴勇波
导师单位
机械与能源工程系
论文答辩日期
2022-05-20
论文提交日期
2022-09-08
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

随着5G技术的快速发展,市场对精细陶瓷结构件的生产效率、制造成本、加工精度等提出了新的要求。其中,氧化锆陶瓷是使用最普遍的典型精细陶瓷材料,但因具有高脆性、低断裂韧性等特点,致使精密加工难度大,一直困扰着其应用前景。由于传统磨削技术在陶瓷加工中仍存在加工效率低,砂轮磨损快,制造成本较高等问题。因此,需要开发新的工艺技术以突破精细陶瓷结构件的加工技术瓶颈。本文将以氧化锆陶瓷作为研究对象,提出了切向超声辅助镜面磨削的精密加工方法,为陶瓷加工技术提供必要的理论支持和实践经验,具有重要的科研意义。

围绕圆弧面和平面结合的典型氧化锆陶瓷结构件高效高精度加工目标,本文开展了切向超声辅助磨削加工原理研究及实验装置的搭建、超声辅助修整金刚石砂轮的实验研究、切向超声辅助磨削氧化锆陶瓷基础特性研究以及曲面结构的切向超声辅助磨削路径研究。论文首先立足于研究背景,分析了现有精细陶瓷材料与精细陶瓷曲面加工技术、砂轮修整的研究动态;明确了现有技术的特点与不足,基于此提出了本文的研究内容与技术路线。阐述了切向超声辅助磨削曲面和平面的加工原理,开展了磨粒运动轨迹仿真,明确了超声对磨粒磨削速度和加速度的增益效果,分析了陶瓷材料塑性去除的临界深度;基于提出的加工方法,搭建了实验装置,确定了砂轮选型规则与砂轮修整装置,并验证了装置的可靠性。

论文提出了超声辅助绿色碳化硅(Green Silicon Carbide,简称GC)杯形修整轮修整金刚石砂轮的方法,通过单因素实验明确了超声对修整力的变化、砂轮圆度误差与直线度误差、有效磨粒分布与微观形态以及砂轮修整比的影响规律,并开展了有无超声辅助砂轮修整对磨削氧化锆陶瓷的对比实验;总结了振幅对金属/树脂结合剂金刚石砂轮修整的影响特性。结果表明,因砂轮径向跳动对实际修整切深的影响,修整中的修整力随着砂轮的旋转而周期性变化,其峰值随修整时间逐渐减小并趋于稳定,但随着超声振幅的增加而减小。超声辅助修整后的金刚石砂轮圆度和直线度得到明显改善,在Ap-p=4.7 μm时,修整1.5 min之后,砂轮圆度误差和直线度误差相比于无超声条件分别降低了约23%和17%。同时,随着超声振幅的增加,修整过程中的圆度和直线度误差减少率增加,修整的时间缩短,可以快速达到修整目标。

基于切向超声辅助镜面磨削基础实验,研究了氧化锆陶瓷平面磨削单因素实验中工艺参数对氧化锆陶瓷表面形貌和表面粗糙度、磨削力和磨削温度的影响规律,以及有无超声作用下砂轮的磨损状况;基于实验结果着重阐述了磨粒切削轨迹的相交现象,深入研究了切向超声辅助磨削加工对改善表面质量的内在原因,同时就切向超声辅助磨削加工改善砂轮的磨损状况,提高砂轮使用寿命的效果开展了分析。结果表明,切向超声辅助磨削可以实现氧化锆陶瓷的镜面加工,在Ap-p=4.66 μm时,与传统磨削(Ap-p=0)相比,工件表面粗糙度下降43.8%。法向磨削力和磨削温度也随着超声振幅的增大而下降。此外,切向超声辅助磨削加工可以改善砂轮的磨损状况,减少砂轮上磨粒的脱落,延长砂轮使用寿命。

最后,以一具体曲面为对象,设计了曲面镜面磨削实验研究的方法,选取α=0°,α=45°,α=90°三种砂轮的走刀方向。研究了不同路径对工件表面质量和轮廓的影响规律以及砂轮的磨损情况;基于单颗金刚石划擦实验,分析了单颗磨粒在不同路径下的材料去除方式;建立了磨削加工模型,对曲面工件表面形貌和表面粗糙度进行了数值仿真,阐述了表面微观几何形貌的影响因素,描述了表面空间磨削运动轨迹,并对加工结果与趋势进行了预测与验证。研究结果表明,当α=0°时,工件的面粗糙度最小,且沿着宽度方向轮廓误差也最小,但在沿着曲率方向轮廓误差最大;而α=90°的路径下,面粗糙度变大,沿着曲率方向轮廓误差最小;α=45°的路径下表面质量最差。砂轮的磨损以磨粒磨损为主,α=45°的路径下,砂轮磨损的形式包括磨粒磨损和结合剂破碎。α=45°的路径时,材料脆性破碎的几率增高,从而形成了不同的表面加工质量。

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-07
参考文献列表


[1] Wdowik R, Porzycki J, Magdziak M. Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of ZrO2 based ceramic material characterized by different states of sintering[J]. Procedia CIRP, 2017, 62: 293-298.

[2] Jain A K, Pandey P M, Narasaiah K, et al. Effect of tool design parameters study in micro rotary ultrasonic machining process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5-8): 1267-1285.

[3] Xu Z L, Zhong J W, Su X L, et al. Experimental study on mechanical properties of silica-based ceramic core for directional solidification of single crystal superalloy[J]. Ceramics International, 2018, 44(1): 394-401.

[4] 樊新民,张骋,蒋丹宇. 工程陶瓷及其应用[M]. 北京:机械工业出版社,2006.

[5] 田欣利,徐西鹏,袁巨龙. 工程陶瓷先进加工与质量控制技术[M]. 北京:国防工业出版社,2014.

[6] 于思远,林彬. 工程陶瓷材料的加工技术及其应用[M]. 北京:机械工业出版社,2008.

[7] T B Thoe, D K Aspinwall, M L H Wise. Review on ultrasonic machining[J]. Int J Mach Tools Manufact, 1997, 38: 239-255.

[8] Agarwal S R, P Venkateswara. A new surface roughness prediction model for ceramic grinding[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2005, 219(11): 811-821.

[9] Wang H, Wang C-A, Yao X, et al. Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2007, 90(7): 1992-1997.

[10] Agarwal S, Rao P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools & Manufacture, 2008, 48(6): 698-710.

[11] Samant A N, Dahotre N B. Laser machining of structural ceramics—a review[J]. Journal of the European Ceramic Society, 2009, 29(6): 969-993.

[12] Xu S, Yao Z Q, He J W, et al. Grinding characteristics, material removal, and damage formation mechanisms of zirconia ceramics in hybrid laser/grinding[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2018, 140(7): 071010.

[13] 侯永改,田久根,路继红,周青海,马加加. 氧化锆陶瓷磨削加工的研究现状[J]. 中国陶瓷,2014,50(09):6-9.

[14] Lv D, Huang Y, Tang Y, et al. Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes[J]. The International Journal of Advanced Manufacturing Technology, 2012, 67(1-4): 613-622.

[15] Lauwers B. Surface integrity in hybrid machining processes[J]. Procedia Engineering, 2011, 19: 241-251.

[16] Brecher C, Schug R, Weber A, et al. New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding[J]. The International Journal of Advanced Manufacturing Technology, 2009, 47(1-4): 153-159.

[17] Li Z C, Jiao Y, Deines T W, et al. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12-13): 1402-1411.

[18] W Qu, K Wang, M H Miller, Y Huang, A Chandra. Using vibration-assisted grinding to reduce subsurface damage[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24: 329-377.

[19] Zemzemi F, Rech J, Salem W B, et al. Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an inconel 718 alloy with cbn and coated carbide tools[J]. Advances in Manufacturing Science and Technology, 2014, 38(1): 5-22.

[20] Dambatta Y S, Sarhan A D, Sayuti M, et al. Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications—a review[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12): 3825-3858.

[21] Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J]. International Journal of Machine Tools & Manufacture, 2003, 43(8): 811-823.

[22] Itoh N, Ohmori H, Grinding characteristics of hard and brittle materials by fine grain lapping wheels with ELID[J]. Journal of Materials Processing Technology, 1996, 62(4): 315-320.

[23] Kaliszer H. Grinding technology. Theory and applications of machining with abrasives: S. Malkin, Ellis Horwood Ltd.[J]. 1991, 31(3): 435-436.

[24] 纪仁杰,刘永红. 绝缘及弱导电工程陶瓷电火花铣磨复合加工技术及机理研究[J]. 机械工程学报,2013,49(04):57.

[25] 雷小宝. 预烧结氧化锆义齿高速铣削加工关键技术与装备研究[D]. 南京航空航天大学,2012.

[26] Chijimatsu M, Fujita T, Kobayashi A, et al. Experiment and validation of numerical simulation of coupled thermal, hydraulic and mechanical behaviour in the engineered buffer materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(4): 403-424.

[27] Ding W F, Dai C W, Yu T Y, et al. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction[J]. International Journal of Machine Tools & Manufacture, 2017, 122: 52-66.

[28] Chen Y R, Su H H, He J Y, et al. The effect of torsional vibration in longitudinal-torsional coupled ultrasonic vibration-assisted grinding of silicon carbide ceramics[J]. Materials (Basel), 2021, 14(3): 688.

[29] 吴玉厚,王浩,孙健,等. 氮化硅陶瓷磨削表面质量的建模与预测[J]. 表面技术,2020,49(03):281-289.

[30] Nakai M E, Aguiar P R, Guillardi H, et al. Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics[J]. Expert Systems with Applications, 2015, 42(20): 7026-7035.

[31] Li Z P, Zhang F H, Luo X C, et al. A new grinding force model for micro grinding RB-SiC ceramic with grinding wheel topography as an input[J]. Micromachines, 2018, 9(8): 368.

[32] Cao J G, Wu Y B, Lu D, et al. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools & Manufacture, 2014, 79: 49-61.

[33] Zhong Z W, Yang H B. Development of a vibration device for grinding with microvibration[J]. Materials and Manufacturing Processes, 2004, 19(6): 1121-1132.

[34] 李伯明,赵波. 现代磨削技术[M]. 北京:机械工业出版社,2003.

[35] 赵恒华,冯宝富,高贯斌,等. 超高速磨削技术在机械制造领域中的应用[J]. 东北大学学报:自然科学版,2003,(06):564-568.

[36] Huang H, Yin L, Zhou L B. High speed grinding of silicon nitride with resin bond diamond wheels[J]. Journal of Materials Processing Technology, 2003, 141(3): 329-336.

[37] Yin L, Huang H. Ceramic response to high speed grinding[J]. Machining Science and Technology, 2004, 8(1): 21-37.

[38] J A Kovch, P J Blau, S Malkin. A feasibility investigation of high-speed,low-damage grinding for advanced ceramics[C]. The 5th International Grinding Conference, 1993, Cincinnati. Ohio. : 26-28.

[39] 谢桂芝,黄红武,黄含. 工程陶瓷材料高效深磨的试验研究[J]. 机械工程学报,2007,43:176-184.

[40] Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 345(1-2): 155-163.

[41] Hwang T W, Evans C J, Malkin S. An investigation of high speed grinding with electroplated diamond wheels[J]. Cirp Annals 2000: Manufacturing Technology, 2000: 245-248.

[42] Hwang T W, Evans C J, Whitenton E P, et al. High speed grinding of silicon nitride with electroplated diamond wheels, part 1: Wear and wheel life[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2000, 122(1): 32-41.

[43] 冯衍霞,黄传真,侯荣国,卢新郁. 磨料水射流切割陶瓷材料的加工表面质量研究[J]. 2007,41: 43-46.

[44] 李增强,赵佩杰,宋雨轩,等. 微磨料水射流加工技术研究现状[J]. 纳米技术与精密工程,2016,14(02):134-144.

[45] 陈正雄,武美萍,强争荣. 磨料水射流抛光生物陶瓷工艺参数优化[J]. 机械设计与研究,2017,33(02):129-132+137.

[46] Hashish M, Kotchon A, Ramulu M. Status of AWJ machining of CMCS and hard materials[C]. Proceedings of INTERTECH 2015, 2015.

[47] Pachaury Y, Tandon P. An overview of electric discharge machining of ceramics and ceramic based composites[J]. Journal of Manufacturing Processes, 2017, 25(Complete): 369-390.

[48] Farooqui M N, Patil N G. A perspective on shaping of advanced ceramics by electro discharge machining[J]. Procedia Manufacturing, 2018, 20: 65-72.

[49] Guu Y H, Hocheng H, Tai N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science & Technology, 2001, 36(8): 2037-2043.

[50] Wei C, Zhao L, Hu D, et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(1-4): 187-194.

[51] 李洪峰,李嘉,温雨,等. 陶瓷材料电火花加工技术及研究进展[J]. 济南大学学报:自然科学版,2008(02):178-182.

[52] Muttamara A, Fukuzawa Y, Mohri N, et al. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 243-247.

[53] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-machining[J]. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1577-1589.

[54] 刘永红,于丽丽,李小朋,等. 非导电工程陶瓷电火花磨削技术[J]. 机械工程学报,2008(08):132-136.

[55] King R F, Tabor D. The strength properties and frictional behaviour of brittle solids[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1954, 223(1153): 225-238.

[56] Aboaf J A. Effects of very high pressures on glass - results obtained using a tetrahedral anvil apparatus[J]. Journal of the American Ceramic Society, 1963, 46(6): 296-297.

[57] Lawn B R, Fuller E R. Equilibrium penny-like cracks in indentation fracture[J]. Journal of Materials Science, 1975, 10(12): 2016-2024.

[58] M V Swain, J T H, J E Field. Indentation induced strength degradation and stress corrosion of tempered glasses[J]. Fracture Mechanics of Ceramics, 1978, 3: 231-243.

[59] Follansbee P S, Sinclair G B. Quasi-static normal indentation of an elasto plastic half-space by a rigid sphere-i: analysis[J]. International Journal of Solids and Structures, 1984, 20(1): 81-91.

[60] Sinclair G B, Follansbee P S, Johnson K L. Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere-II. results[J]. International Journal of Solids and Structures, 1985, 21(8): 865-888.

[61] 陈明君,董申,李旦,张飞虎. 单晶硅脆性材料塑性域超精密磨削加工的研究[J]. 航空精密制造技术,2000(02):8-11.

[62] Liu K, Li X P, Rahman M, et al. A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(7-8): 631-637.

[63] Schinker M G. Subsurface damage mechanisms at high-speed ductile machining of optical-glasses[J]. Precision Engineering-Journal of the American Society for Precision Engineering, 1991, 13(3): 208-218.

[64] Fang F Z, Zhang G X. An experimental study of optical glass machining[J]. International Journal of Advanced Manufacturing Technology, 2004, 23(3-4): 155-160.

[65] Chen M J, Zhao Q L, Dong S, et al. The critical conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding[J]. Journal of Materials Processing Technology, 2005, 168(1): 75-82.

[66] 王景贺,陈明君,董申,等. KDP晶体单点金刚石切削脆塑转变机理的研究[J]. 光电工程,2005(07):67-70+88.

[67] Zhong Z W. Ductile or partial ductile mode machining of brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(8): 579-585.

[68] Shen J Y, Luo C B, Zeng W M, et al. Ceramics grinding under the condition of constant pressure[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 176-181.

[69] 郑建新,徐家文,吕正兵. 陶瓷材料延性域磨削机理[J]. 硅酸盐学报,2006,34(1):102-106.

[70] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.

[71] Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics[J]. CIRP Annals - Manufacturing Technology, 1994, 43(1): 305-308.

[72] Katahira K, Ohmori H, Yoshida K, et al. ELID grinding effects on fabrication of advanced ceramics components riken[C]. In Proceedings of of euspen Int. Top Conf., Aachen, Germany, 2003: 317-320.

[73] Zhang F H, Kang G W, Qiu Z J, et al. High efficiency ELID grinding of alumina ceramics[J]. Key Engineering Materials, 2003, 238-239: 71-76.

[74] Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing[J]. CIRP Annals - Manufacturing Technology, 1990, 39(1): 329-332.

[75] Itoh N, Ohmori H, Moriyasu S, et al. Finishing characteristics of brittle materials by ELID-lap grinding using metal-resin bonded wheels[J]. International Journal of Machine Tools & Manufacture, 1998, 38(7): 747-762.

[76] Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels[J]. CIRP Annals, 1995, 44(1): 287-290.

[77] Marinescu I D, Miyakawa C, Ohmori H, et al. ELID grinding characteristics of silicon wafer[J]. Precision Engineering, Nanotechnology, Vol 1, Proceedings, 1999: 380-383.

[78] Rahman M, Kumar A S, Lim H S, et al. Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2003, 28: 957-974.

[79] H Ohmori, N Itoh, T Kasai, T Karaki-Doy, et al. Metal–resin bond grindstone and method for manufacturing the same[P]. US, US6203589 B1, 2001.

[80] Liu W, Deng Z H, Shang Y Y, et al. Effects of grinding parameters on surface quality in silicon nitride grinding[J]. Ceramics International, 2017, 43(1): 1571-1577.

[81] Chang C W, Kuo C P. An investigation of laser-assisted machining of Al2O3 ceramics planing[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3-4): 452-461.

[82] Chang W L, Luo X C, Zhao Q L, et al. Laser assisted micro grinding of high strength materials[J]. Key Engineering Materials, 2012, 496: 44-49.

[83] Kumar M, Melkote S, Lahoti G. Laser-assisted microgrinding of ceramics[J]. Cirp Annals-Manufacturing Technology, 2011, 60(1): 367-370.

[84] Rozzi J C, Pfefferkorn F E, Shin Y C, et al. Experimental evaluation of the laser assisted machining of silicon nitride ceramics[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2000, 122(4): 666-670.

[85] Lei S, Shin Y C, Incropera F P. Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2001, 123(4): 639-646.

[86] Marinescu I D . Laser assisted grinding of ceramics[J]. VDI-Berichte, 1996, 47(1276): 297-303.

[87] 陈可心,张有,廖健宏,等. 用连续波CO2激光对氮化硅陶瓷打孔的实验研究[J]. 华南师范大学学报:自然科学版,2000(01):59-62.

[88] 洪蕾,李力钧,鞠春雷. 调Q脉冲CO2激光切割Si3N4工程陶瓷的机理研究[J]. 机械工程学报,2002,38:61-65.

[89] Kizaki T, Ito Y, Tanabe S, et al. Laser-assisted machining of zirconia ceramics using a diamond bur[J]. 18th Cirp Conference on Electro Physical and Chemical Machining (Isem Xviii), 2016, 42: 497-502.

[90] Zhang X H, Chen G Y, An W K, et al. Experimental study of machining characteristics in laser induced wet grinding silicon nitride[J]. Materials and Manufacturing Processes, 2014, 29(11-12): 1477-1482.

[91] Przestacki D, Szymanski P, Wojciechowski S. Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning[J]. Composites Part A: Applied Science and Manufacturing, 2016, 91A(Pt.1): 370-379.

[92] Xu S, Yao Z Q, Cai H Y, et al. An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 3299-3306.

[93] Brehl D E, Dow T A. Review of vibration-assisted machining[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2008, 32(3): 153-172.

[94] Moriwaki T, Shamoto E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration - sciencedirect[J]. CIRP Annals - Manufacturing Technology, 1991, 40(1): 559-562.

[95] Lauwers B, Klocke F, Klink A, et al. Hybrid processes in manufacturing[J]. Cirp Annals-Manufacturing Technology, 2014, 63(2): 561-583.

[96] Thoe T B, Aspinwall D K, Killey N. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy[J]. Journal of Materials Processing Technology, 1999, 93: 323-328.

[97] 梁志强,王西彬,吴勇波,等. 超声振动辅助磨削技术的现状与新进展[J]. 兵工学报,2010,31:1930-1935.

[98] Liang Z. Development of a two-dimensional ultrasonic vibration assisted grinding technique of monocrystal silicon[J]. Journal of Mechanical Engineering, 2010, 46(13): 192-198.

[99] Liang Z, Wang XB, Wu YB, et al. Mechanism of surface formation for two-dimensional ultrasonic vibration assisted grinding of monocrystal silicon with vertical workpiece vibration[J]. Journal of Mechanical Engineering, 2010, 46(19): 171-176.

[100] Aurich J C, Kirsch B, Setti D, et al. Abrasive processes for micro parts and structures[J]. CIRP Annals - Manufacturing Technology, 2019, 68(2): 653-676.

[101] Suzuki K, Makizaki T. Study on ultrasonic elliptic vibration grinding: 1st report-proposal of an ultrasonic elliptic vibration grinding wheel by utilizing a stator of an ultrasonic motor[J]. Journal of the Japan Society of Grinding Engineers, 1998, 42: 448-653.

[102] Liang Z, Wu Y, Wang X, et al. A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining[J]. International Journal of Machine Tools & Manufacture, 2010, 50(8): 728-736.

[103] Spur M, Holl S E. Ultrasonic assisted grinding of ceramics[J]. Journal of Materials Processing Technology, 1996, 62(4): 287-293.

[104] Denkena B, Friemuth T, Reichstein M, et al. Potentials of different process kinematics in micro grinding[J]. CIRP Annals - Manufacturing Technology, 2003, 52(1): 463-466.

[105] Liang Z, Wang X, Wu Y, et al. An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire[J]. Journal of Materials Processing Technology, 2012, 212(4): 868-876.

[106] Gao G F, Zhao B, Xiang D H, et al. Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics[J]. Journal of Materials Processing Technology, 2009, 209(1): 32-37.

[107] Yan Y Y, Zhao B, Liu J L. Ultraprecision surface finishing of nano-ZrO2 ceramics using two-dimensional ultrasonic assisted grinding[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(5-6): 462-467.

[108] Lee T C, Chan C W. Mechanism of the ultrasonic machining of ceramic composites[J]. Journal of Materials Processing Technology, 1997, 71(2): 195-201.

[109] Klecka M, Subhash G. Grain size dependence of scratch-induced damage in alumina ceramics[J]. Wear, 2008, 265(5-6): 612-619.

[110] Farhadi A, Abdullah A, Zarkoob J, et al. Analytical and numerical simulation of ultrasonic assisted grinding[J]. Proceedings of the Asme 10th Biennial Conference on Engineering Systems Design and Analysis, 2010, 4: 763-768.

[111] Brinksmeier E, Mutlugunes Y, Klocke F, et al. Ultra-precision grinding[J]. Cirp Annals-Manufacturing Technology, 2010, 59(2): 652-671.

[112] 邵水军,赵波. 工程陶瓷材料磨削加工技术研究[J]. 陶瓷学报,2012,33(1):57-58.

[113] Neto H K, Diniz A E, Pederiva R. Influence of tooth passing frequency, feed direction, and tool overhang on the surface roughness of curved surfaces of hardened steel[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 753-764.

[114] Xie J, Zheng J H, Zhou R M, et al. Dispersed grinding wheel profiles for accurate freeform surfaces[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6): 536-542.

[115] Kuriyagawa T, Zahmaty M, et al. A new grinding method for aspheric ceramic mirrors[J]. Journal of Materials Processing Technology, 1996, 62(4): 387-392.

[116] Kuriyagawa T, Syoji K, Zhou L. Precision form truing and dressing for aspheric ceramics mirror grinding[J]. Proceedings of the International Conference on Machining of Advanced Materials, 1994, 16(1): 325-331.

[117] Beaucamp A, Simon P, Charlton P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics[J]. International Journal of Machine Tools and Manufacture, 2017, 115: 29-37.

[118] Beaucamp A, Namba Y, Charlton P. Process mechanism in shape adaptive grinding (SAG)[J]. Cirp Annals-Manufacturing Technology, 2015, 64(1): 305-308.

[119] Malkin S, Ritter J E. Grinding mechanisms and strength degradation for ceramics[J]. Journal of Engineering for Industry-Transactions of the Asme, 1989, 111(2): 167-174.

[120] Hauth S, Richterich C, Glasmacher L, et al. Constant cusp toolpath generation in configuration space based on offset curves[J]. International Journal of Advanced Manufacturing Technology, 2011, 53(1-4): 325-338.

[121] Jin Y, He Y, Fu G Q, et al. A non-retraction path planning approach for extrusion-based additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48: 132-144.

[122] Sun Y W, Sun S X, Xu J T, et al. A unified method of generating tool path based on multiple vector fields for CNC machining of compound NURBS surfaces[J]. Computer-Aided Design, 2017, 91: 14-26.

[123] Feng H Y, Li H W. Constant scallop-height tool path generation for three-axis sculptured surface machining[J]. Computer-Aided Design, 2002, 34(9): 647-654.

[124] Chen Z C, Song D. A practical approach to generating accurate iso-cusped tool paths for three-axis CNC milling of sculptured surface parts[J]. Journal of Manufacturing Processes, 2006, 8(1): 29-38.

[125] Yoon J H. Fast tool path generation by the iso-scallop height method for ball-end milling of sculptured surfaces[J]. International Journal of Production Research, 2005, 43(23): 4989-4998.

[126] 孙玉文,刘伟军,王越超. 基于三角网格曲面模型的刀位轨迹计算方法[J]. 机械工程学报,2002(10):50-53.

[127] Sun Y W, Feng D Y, Guo D M. An adaptive uniform toolpath generation method for the automatic polishing of complex surfaces with adjustable density[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12): 1673-1683.

[128] Lin Z W, Fu J Z, Sun Y F, et al. Non-retraction toolpath generation for irregular compound freeform surfaces with the LKH TSP solver[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 2325-2339.

[129] Zhang D D, Yang P H, Qian X P. Adaptive NC path generation from massive point data with bounded error[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2009, 131(1): 741-751.

[130] Feng H Y, Teng Z J. Iso-planar piecewise linear NC tool path generation from discrete measured data points[J]. Computer-Aided Design, 2005, 37(1): 55-64.

[131] Teng Z J, Feng H Y, Azeem A. Generating efficient tool paths from point cloud data via machining area segmentation[J]. International Journal of Advanced Manufacturing Technology, 2006, 30(3-4): 254-260.

[132] Rahman M S, Saleh T, Lim H S, et al. Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation[J]. International Journal of Machine Tools & Manufacture, 2008, 48(7-8): 887-895.

[133] Hwang Y, Kuriyagawa T, Lee S K. Wheel curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools & Manufacture, 2006, 46(15): 1929-1933.

[134] Chen F J, Yin S H, Huang H, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement[J]. International Journal of Machine Tools & Manufacture, 2010, 50(5): 480-486.

[135] Chen B, Guo B, Zhao Q L. On-machine precision form truing of arc-shaped diamond wheels[J]. Journal of Materials Processing Technology, 2015, 223: 65-74.

[136] Marinescu I D. Handbook of advanced ceramics machining[C]. CRC Press, 2007.

[137] Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision grinding[J]. CIRP Annals - Manufacturing Technology, 2010, 59(2): 652-671.

[138] 郭隐彪,杨炜,王振忠,等. 大口径光学元件超精密加工技术与应用[J]. 机械工程学报,2013,49(19):171-178.

[139] Lin X H, Wang Z Z, Guo Y B, et al. Research on the error analysis and compensation for the precision grinding of large aspheric mirror surface[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 233-239.

[140] 赵清亮,郭兵. 微结构光学功能元件模具的超精密磨削加工技术[J]. 机械工程学报,2011,47(21):177-185.

[141] Chen M J, Li Z, Yu B, et al. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5): 982-987.

[142] Xie J, Zhou R M, Xu J, et al. Form-truing error compensation of diamond grinding wheel in CNC envelope grinding of free-form surface[J]. International Journal of Advanced Manufacturing Technology, 2010, 48(9-12): 905-912.

[153] Stompe M, Von Witzendorff P, Cvetkovic S, et al. Concept for performance-enhancement of ultra-precision dicing for bulk hard and brittle materials in micro applications by laser dressing[J]. Microelectronic Engineering, 2012, 98: 544-547.

[144] Takagi J, Liu M. Fracture characteristics of grain cutting edges of CBN wheel in truing operation[J]. Journal of Materials Processing Technology, 1996, 62(4): 397-402.

[145] Sanchez J A, Pombo I, Cabanes I, et al. Electrical discharge truing of metal-bonded CBN wheels using single-point electrode[J]. International Journal of Machine Tools & Manufacture, 2008, 48(3-4): 362-370.

[146] Cai L R, Jia Y, Hu D J. Dressing of metal-bonded superabrasive grinding wheels by means of mist-jetting electrical discharge technology[J]. Journal of Materials Processing Technology, 2009, 209(2): 779-784.

[147] Itoh N, Ohmori H. Development of metal-free conductive bonded diamond wheel for environmentally-friendly electrolytic in-process dressing (ELID) grinding[J]. New Diamond and Frontier Carbon Technology, 2004, 14(4): 227-238.

[148] J G Cao, Y B Wu, D Lu. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools & Manufacture, 2014, 79: 49-61.

[149] Zhao B, Wu Y, Liu C.S. The study on ductile removal mechanisms of ultrasonic vibration grinding nano-ZrO2 ceramics[J]. Key Engineering Materials, 2006, 304-305: 171-175.

[150] Beaucamp A, Katsuura T, & Takata K. Process mechanism in ultrasonic cavitation assisted fluid jet polishing[J]. Cirp Annals, 2018. 67(1): 361-364.

[151] Teidelt E, Starcevic J, Popov V L. Influence of ultrasonic oscillation on static and sliding frication [J]. Tribology Letters, 2012, 48(1):51-62.

[152] 吴博达,常颖,杨志刚. 超声振动减摩性能的实验研究及理论分析[J]. 中国机械工程,2004,15(09):813-815.

[153] 黄明军,周铁英,巫庆华. 超声振动对摩擦力的影响[J]. 声学学报,2000, 25(02):115-119.

[154] Vezzoli E, Messaoud WB, Amberg M, et al. Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation[J]. IEEE Transactions on Haptics, 2017, 8(2): 235-239.

[155] 王艳,谢建华,刘建国. 基于瑞利分布的平面磨削温度场的仿真研究[J]. 中国机械工程,2015,26(4):484-490.

[156] Armarego E J, Brown R H. The machining of metals[M]. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TM911.42
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395801
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
乔家平. 氧化锆陶瓷的切向超声辅助镜面磨削研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749328-乔家平-机械与能源工程(8829KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[乔家平]的文章
百度学术
百度学术中相似的文章
[乔家平]的文章
必应学术
必应学术中相似的文章
[乔家平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。