[1] Wdowik R, Porzycki J, Magdziak M. Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of ZrO2 based ceramic material characterized by different states of sintering[J]. Procedia CIRP, 2017, 62: 293-298.
[2] Jain A K, Pandey P M, Narasaiah K, et al. Effect of tool design parameters study in micro rotary ultrasonic machining process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5-8): 1267-1285.
[3] Xu Z L, Zhong J W, Su X L, et al. Experimental study on mechanical properties of silica-based ceramic core for directional solidification of single crystal superalloy[J]. Ceramics International, 2018, 44(1): 394-401.
[4] 樊新民,张骋,蒋丹宇. 工程陶瓷及其应用[M]. 北京:机械工业出版社,2006.
[5] 田欣利,徐西鹏,袁巨龙. 工程陶瓷先进加工与质量控制技术[M]. 北京:国防工业出版社,2014.
[6] 于思远,林彬. 工程陶瓷材料的加工技术及其应用[M]. 北京:机械工业出版社,2008.
[7] T B Thoe, D K Aspinwall, M L H Wise. Review on ultrasonic machining[J]. Int J Mach Tools Manufact, 1997, 38: 239-255.
[8] Agarwal S R, P Venkateswara. A new surface roughness prediction model for ceramic grinding[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2005, 219(11): 811-821.
[9] Wang H, Wang C-A, Yao X, et al. Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2007, 90(7): 1992-1997.
[10] Agarwal S, Rao P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding[J]. International Journal of Machine Tools & Manufacture, 2008, 48(6): 698-710.
[11] Samant A N, Dahotre N B. Laser machining of structural ceramics—a review[J]. Journal of the European Ceramic Society, 2009, 29(6): 969-993.
[12] Xu S, Yao Z Q, He J W, et al. Grinding characteristics, material removal, and damage formation mechanisms of zirconia ceramics in hybrid laser/grinding[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2018, 140(7): 071010.
[13] 侯永改,田久根,路继红,周青海,马加加. 氧化锆陶瓷磨削加工的研究现状[J]. 中国陶瓷,2014,50(09):6-9.
[14] Lv D, Huang Y, Tang Y, et al. Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes[J]. The International Journal of Advanced Manufacturing Technology, 2012, 67(1-4): 613-622.
[15] Lauwers B. Surface integrity in hybrid machining processes[J]. Procedia Engineering, 2011, 19: 241-251.
[16] Brecher C, Schug R, Weber A, et al. New systematic and time-saving procedure to design cup grinding wheels for the application of ultrasonic-assisted grinding[J]. The International Journal of Advanced Manufacturing Technology, 2009, 47(1-4): 153-159.
[17] Li Z C, Jiao Y, Deines T W, et al. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12-13): 1402-1411.
[18] W Qu, K Wang, M H Miller, Y Huang, A Chandra. Using vibration-assisted grinding to reduce subsurface damage[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24: 329-377.
[19] Zemzemi F, Rech J, Salem W B, et al. Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an inconel 718 alloy with cbn and coated carbide tools[J]. Advances in Manufacturing Science and Technology, 2014, 38(1): 5-22.
[20] Dambatta Y S, Sarhan A D, Sayuti M, et al. Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications—a review[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12): 3825-3858.
[21] Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J]. International Journal of Machine Tools & Manufacture, 2003, 43(8): 811-823.
[22] Itoh N, Ohmori H, Grinding characteristics of hard and brittle materials by fine grain lapping wheels with ELID[J]. Journal of Materials Processing Technology, 1996, 62(4): 315-320.
[23] Kaliszer H. Grinding technology. Theory and applications of machining with abrasives: S. Malkin, Ellis Horwood Ltd.[J]. 1991, 31(3): 435-436.
[24] 纪仁杰,刘永红. 绝缘及弱导电工程陶瓷电火花铣磨复合加工技术及机理研究[J]. 机械工程学报,2013,49(04):57.
[25] 雷小宝. 预烧结氧化锆义齿高速铣削加工关键技术与装备研究[D]. 南京航空航天大学,2012.
[26] Chijimatsu M, Fujita T, Kobayashi A, et al. Experiment and validation of numerical simulation of coupled thermal, hydraulic and mechanical behaviour in the engineered buffer materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(4): 403-424.
[27] Ding W F, Dai C W, Yu T Y, et al. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction[J]. International Journal of Machine Tools & Manufacture, 2017, 122: 52-66.
[28] Chen Y R, Su H H, He J Y, et al. The effect of torsional vibration in longitudinal-torsional coupled ultrasonic vibration-assisted grinding of silicon carbide ceramics[J]. Materials (Basel), 2021, 14(3): 688.
[29] 吴玉厚,王浩,孙健,等. 氮化硅陶瓷磨削表面质量的建模与预测[J]. 表面技术,2020,49(03):281-289.
[30] Nakai M E, Aguiar P R, Guillardi H, et al. Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics[J]. Expert Systems with Applications, 2015, 42(20): 7026-7035.
[31] Li Z P, Zhang F H, Luo X C, et al. A new grinding force model for micro grinding RB-SiC ceramic with grinding wheel topography as an input[J]. Micromachines, 2018, 9(8): 368.
[32] Cao J G, Wu Y B, Lu D, et al. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools & Manufacture, 2014, 79: 49-61.
[33] Zhong Z W, Yang H B. Development of a vibration device for grinding with microvibration[J]. Materials and Manufacturing Processes, 2004, 19(6): 1121-1132.
[34] 李伯明,赵波. 现代磨削技术[M]. 北京:机械工业出版社,2003.
[35] 赵恒华,冯宝富,高贯斌,等. 超高速磨削技术在机械制造领域中的应用[J]. 东北大学学报:自然科学版,2003,(06):564-568.
[36] Huang H, Yin L, Zhou L B. High speed grinding of silicon nitride with resin bond diamond wheels[J]. Journal of Materials Processing Technology, 2003, 141(3): 329-336.
[37] Yin L, Huang H. Ceramic response to high speed grinding[J]. Machining Science and Technology, 2004, 8(1): 21-37.
[38] J A Kovch, P J Blau, S Malkin. A feasibility investigation of high-speed,low-damage grinding for advanced ceramics[C]. The 5th International Grinding Conference, 1993, Cincinnati. Ohio. : 26-28.
[39] 谢桂芝,黄红武,黄含. 工程陶瓷材料高效深磨的试验研究[J]. 机械工程学报,2007,43:176-184.
[40] Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 345(1-2): 155-163.
[41] Hwang T W, Evans C J, Malkin S. An investigation of high speed grinding with electroplated diamond wheels[J]. Cirp Annals 2000: Manufacturing Technology, 2000: 245-248.
[42] Hwang T W, Evans C J, Whitenton E P, et al. High speed grinding of silicon nitride with electroplated diamond wheels, part 1: Wear and wheel life[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2000, 122(1): 32-41.
[43] 冯衍霞,黄传真,侯荣国,卢新郁. 磨料水射流切割陶瓷材料的加工表面质量研究[J]. 2007,41: 43-46.
[44] 李增强,赵佩杰,宋雨轩,等. 微磨料水射流加工技术研究现状[J]. 纳米技术与精密工程,2016,14(02):134-144.
[45] 陈正雄,武美萍,强争荣. 磨料水射流抛光生物陶瓷工艺参数优化[J]. 机械设计与研究,2017,33(02):129-132+137.
[46] Hashish M, Kotchon A, Ramulu M. Status of AWJ machining of CMCS and hard materials[C]. Proceedings of INTERTECH 2015, 2015.
[47] Pachaury Y, Tandon P. An overview of electric discharge machining of ceramics and ceramic based composites[J]. Journal of Manufacturing Processes, 2017, 25(Complete): 369-390.
[48] Farooqui M N, Patil N G. A perspective on shaping of advanced ceramics by electro discharge machining[J]. Procedia Manufacturing, 2018, 20: 65-72.
[49] Guu Y H, Hocheng H, Tai N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites[J]. Journal of Materials Science & Technology, 2001, 36(8): 2037-2043.
[50] Wei C, Zhao L, Hu D, et al. Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(1-4): 187-194.
[51] 李洪峰,李嘉,温雨,等. 陶瓷材料电火花加工技术及研究进展[J]. 济南大学学报:自然科学版,2008(02):178-182.
[52] Muttamara A, Fukuzawa Y, Mohri N, et al. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 243-247.
[53] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-machining[J]. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1577-1589.
[54] 刘永红,于丽丽,李小朋,等. 非导电工程陶瓷电火花磨削技术[J]. 机械工程学报,2008(08):132-136.
[55] King R F, Tabor D. The strength properties and frictional behaviour of brittle solids[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1954, 223(1153): 225-238.
[56] Aboaf J A. Effects of very high pressures on glass - results obtained using a tetrahedral anvil apparatus[J]. Journal of the American Ceramic Society, 1963, 46(6): 296-297.
[57] Lawn B R, Fuller E R. Equilibrium penny-like cracks in indentation fracture[J]. Journal of Materials Science, 1975, 10(12): 2016-2024.
[58] M V Swain, J T H, J E Field. Indentation induced strength degradation and stress corrosion of tempered glasses[J]. Fracture Mechanics of Ceramics, 1978, 3: 231-243.
[59] Follansbee P S, Sinclair G B. Quasi-static normal indentation of an elasto plastic half-space by a rigid sphere-i: analysis[J]. International Journal of Solids and Structures, 1984, 20(1): 81-91.
[60] Sinclair G B, Follansbee P S, Johnson K L. Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere-II. results[J]. International Journal of Solids and Structures, 1985, 21(8): 865-888.
[61] 陈明君,董申,李旦,张飞虎. 单晶硅脆性材料塑性域超精密磨削加工的研究[J]. 航空精密制造技术,2000(02):8-11.
[62] Liu K, Li X P, Rahman M, et al. A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(7-8): 631-637.
[63] Schinker M G. Subsurface damage mechanisms at high-speed ductile machining of optical-glasses[J]. Precision Engineering-Journal of the American Society for Precision Engineering, 1991, 13(3): 208-218.
[64] Fang F Z, Zhang G X. An experimental study of optical glass machining[J]. International Journal of Advanced Manufacturing Technology, 2004, 23(3-4): 155-160.
[65] Chen M J, Zhao Q L, Dong S, et al. The critical conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding[J]. Journal of Materials Processing Technology, 2005, 168(1): 75-82.
[66] 王景贺,陈明君,董申,等. KDP晶体单点金刚石切削脆塑转变机理的研究[J]. 光电工程,2005(07):67-70+88.
[67] Zhong Z W. Ductile or partial ductile mode machining of brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(8): 579-585.
[68] Shen J Y, Luo C B, Zeng W M, et al. Ceramics grinding under the condition of constant pressure[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 176-181.
[69] 郑建新,徐家文,吕正兵. 陶瓷材料延性域磨削机理[J]. 硅酸盐学报,2006,34(1):102-106.
[70] Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189.
[71] Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics[J]. CIRP Annals - Manufacturing Technology, 1994, 43(1): 305-308.
[72] Katahira K, Ohmori H, Yoshida K, et al. ELID grinding effects on fabrication of advanced ceramics components riken[C]. In Proceedings of of euspen Int. Top Conf., Aachen, Germany, 2003: 317-320.
[73] Zhang F H, Kang G W, Qiu Z J, et al. High efficiency ELID grinding of alumina ceramics[J]. Key Engineering Materials, 2003, 238-239: 71-76.
[74] Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing[J]. CIRP Annals - Manufacturing Technology, 1990, 39(1): 329-332.
[75] Itoh N, Ohmori H, Moriyasu S, et al. Finishing characteristics of brittle materials by ELID-lap grinding using metal-resin bonded wheels[J]. International Journal of Machine Tools & Manufacture, 1998, 38(7): 747-762.
[76] Ohmori H, Nakagawa T. Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels[J]. CIRP Annals, 1995, 44(1): 287-290.
[77] Marinescu I D, Miyakawa C, Ohmori H, et al. ELID grinding characteristics of silicon wafer[J]. Precision Engineering, Nanotechnology, Vol 1, Proceedings, 1999: 380-383.
[78] Rahman M, Kumar A S, Lim H S, et al. Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2003, 28: 957-974.
[79] H Ohmori, N Itoh, T Kasai, T Karaki-Doy, et al. Metal–resin bond grindstone and method for manufacturing the same[P]. US, US6203589 B1, 2001.
[80] Liu W, Deng Z H, Shang Y Y, et al. Effects of grinding parameters on surface quality in silicon nitride grinding[J]. Ceramics International, 2017, 43(1): 1571-1577.
[81] Chang C W, Kuo C P. An investigation of laser-assisted machining of Al2O3 ceramics planing[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3-4): 452-461.
[82] Chang W L, Luo X C, Zhao Q L, et al. Laser assisted micro grinding of high strength materials[J]. Key Engineering Materials, 2012, 496: 44-49.
[83] Kumar M, Melkote S, Lahoti G. Laser-assisted microgrinding of ceramics[J]. Cirp Annals-Manufacturing Technology, 2011, 60(1): 367-370.
[84] Rozzi J C, Pfefferkorn F E, Shin Y C, et al. Experimental evaluation of the laser assisted machining of silicon nitride ceramics[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2000, 122(4): 666-670.
[85] Lei S, Shin Y C, Incropera F P. Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2001, 123(4): 639-646.
[86] Marinescu I D . Laser assisted grinding of ceramics[J]. VDI-Berichte, 1996, 47(1276): 297-303.
[87] 陈可心,张有,廖健宏,等. 用连续波CO2激光对氮化硅陶瓷打孔的实验研究[J]. 华南师范大学学报:自然科学版,2000(01):59-62.
[88] 洪蕾,李力钧,鞠春雷. 调Q脉冲CO2激光切割Si3N4工程陶瓷的机理研究[J]. 机械工程学报,2002,38:61-65.
[89] Kizaki T, Ito Y, Tanabe S, et al. Laser-assisted machining of zirconia ceramics using a diamond bur[J]. 18th Cirp Conference on Electro Physical and Chemical Machining (Isem Xviii), 2016, 42: 497-502.
[90] Zhang X H, Chen G Y, An W K, et al. Experimental study of machining characteristics in laser induced wet grinding silicon nitride[J]. Materials and Manufacturing Processes, 2014, 29(11-12): 1477-1482.
[91] Przestacki D, Szymanski P, Wojciechowski S. Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning[J]. Composites Part A: Applied Science and Manufacturing, 2016, 91A(Pt.1): 370-379.
[92] Xu S, Yao Z Q, Cai H Y, et al. An experimental investigation of grinding force and energy in laser thermal shock-assisted grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 3299-3306.
[93] Brehl D E, Dow T A. Review of vibration-assisted machining[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology, 2008, 32(3): 153-172.
[94] Moriwaki T, Shamoto E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration - sciencedirect[J]. CIRP Annals - Manufacturing Technology, 1991, 40(1): 559-562.
[95] Lauwers B, Klocke F, Klink A, et al. Hybrid processes in manufacturing[J]. Cirp Annals-Manufacturing Technology, 2014, 63(2): 561-583.
[96] Thoe T B, Aspinwall D K, Killey N. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy[J]. Journal of Materials Processing Technology, 1999, 93: 323-328.
[97] 梁志强,王西彬,吴勇波,等. 超声振动辅助磨削技术的现状与新进展[J]. 兵工学报,2010,31:1930-1935.
[98] Liang Z. Development of a two-dimensional ultrasonic vibration assisted grinding technique of monocrystal silicon[J]. Journal of Mechanical Engineering, 2010, 46(13): 192-198.
[99] Liang Z, Wang XB, Wu YB, et al. Mechanism of surface formation for two-dimensional ultrasonic vibration assisted grinding of monocrystal silicon with vertical workpiece vibration[J]. Journal of Mechanical Engineering, 2010, 46(19): 171-176.
[100] Aurich J C, Kirsch B, Setti D, et al. Abrasive processes for micro parts and structures[J]. CIRP Annals - Manufacturing Technology, 2019, 68(2): 653-676.
[101] Suzuki K, Makizaki T. Study on ultrasonic elliptic vibration grinding: 1st report-proposal of an ultrasonic elliptic vibration grinding wheel by utilizing a stator of an ultrasonic motor[J]. Journal of the Japan Society of Grinding Engineers, 1998, 42: 448-653.
[102] Liang Z, Wu Y, Wang X, et al. A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining[J]. International Journal of Machine Tools & Manufacture, 2010, 50(8): 728-736.
[103] Spur M, Holl S E. Ultrasonic assisted grinding of ceramics[J]. Journal of Materials Processing Technology, 1996, 62(4): 287-293.
[104] Denkena B, Friemuth T, Reichstein M, et al. Potentials of different process kinematics in micro grinding[J]. CIRP Annals - Manufacturing Technology, 2003, 52(1): 463-466.
[105] Liang Z, Wang X, Wu Y, et al. An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire[J]. Journal of Materials Processing Technology, 2012, 212(4): 868-876.
[106] Gao G F, Zhao B, Xiang D H, et al. Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics[J]. Journal of Materials Processing Technology, 2009, 209(1): 32-37.
[107] Yan Y Y, Zhao B, Liu J L. Ultraprecision surface finishing of nano-ZrO2 ceramics using two-dimensional ultrasonic assisted grinding[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(5-6): 462-467.
[108] Lee T C, Chan C W. Mechanism of the ultrasonic machining of ceramic composites[J]. Journal of Materials Processing Technology, 1997, 71(2): 195-201.
[109] Klecka M, Subhash G. Grain size dependence of scratch-induced damage in alumina ceramics[J]. Wear, 2008, 265(5-6): 612-619.
[110] Farhadi A, Abdullah A, Zarkoob J, et al. Analytical and numerical simulation of ultrasonic assisted grinding[J]. Proceedings of the Asme 10th Biennial Conference on Engineering Systems Design and Analysis, 2010, 4: 763-768.
[111] Brinksmeier E, Mutlugunes Y, Klocke F, et al. Ultra-precision grinding[J]. Cirp Annals-Manufacturing Technology, 2010, 59(2): 652-671.
[112] 邵水军,赵波. 工程陶瓷材料磨削加工技术研究[J]. 陶瓷学报,2012,33(1):57-58.
[113] Neto H K, Diniz A E, Pederiva R. Influence of tooth passing frequency, feed direction, and tool overhang on the surface roughness of curved surfaces of hardened steel[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 753-764.
[114] Xie J, Zheng J H, Zhou R M, et al. Dispersed grinding wheel profiles for accurate freeform surfaces[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6): 536-542.
[115] Kuriyagawa T, Zahmaty M, et al. A new grinding method for aspheric ceramic mirrors[J]. Journal of Materials Processing Technology, 1996, 62(4): 387-392.
[116] Kuriyagawa T, Syoji K, Zhou L. Precision form truing and dressing for aspheric ceramics mirror grinding[J]. Proceedings of the International Conference on Machining of Advanced Materials, 1994, 16(1): 325-331.
[117] Beaucamp A, Simon P, Charlton P, et al. Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics[J]. International Journal of Machine Tools and Manufacture, 2017, 115: 29-37.
[118] Beaucamp A, Namba Y, Charlton P. Process mechanism in shape adaptive grinding (SAG)[J]. Cirp Annals-Manufacturing Technology, 2015, 64(1): 305-308.
[119] Malkin S, Ritter J E. Grinding mechanisms and strength degradation for ceramics[J]. Journal of Engineering for Industry-Transactions of the Asme, 1989, 111(2): 167-174.
[120] Hauth S, Richterich C, Glasmacher L, et al. Constant cusp toolpath generation in configuration space based on offset curves[J]. International Journal of Advanced Manufacturing Technology, 2011, 53(1-4): 325-338.
[121] Jin Y, He Y, Fu G Q, et al. A non-retraction path planning approach for extrusion-based additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48: 132-144.
[122] Sun Y W, Sun S X, Xu J T, et al. A unified method of generating tool path based on multiple vector fields for CNC machining of compound NURBS surfaces[J]. Computer-Aided Design, 2017, 91: 14-26.
[123] Feng H Y, Li H W. Constant scallop-height tool path generation for three-axis sculptured surface machining[J]. Computer-Aided Design, 2002, 34(9): 647-654.
[124] Chen Z C, Song D. A practical approach to generating accurate iso-cusped tool paths for three-axis CNC milling of sculptured surface parts[J]. Journal of Manufacturing Processes, 2006, 8(1): 29-38.
[125] Yoon J H. Fast tool path generation by the iso-scallop height method for ball-end milling of sculptured surfaces[J]. International Journal of Production Research, 2005, 43(23): 4989-4998.
[126] 孙玉文,刘伟军,王越超. 基于三角网格曲面模型的刀位轨迹计算方法[J]. 机械工程学报,2002(10):50-53.
[127] Sun Y W, Feng D Y, Guo D M. An adaptive uniform toolpath generation method for the automatic polishing of complex surfaces with adjustable density[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12): 1673-1683.
[128] Lin Z W, Fu J Z, Sun Y F, et al. Non-retraction toolpath generation for irregular compound freeform surfaces with the LKH TSP solver[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 2325-2339.
[129] Zhang D D, Yang P H, Qian X P. Adaptive NC path generation from massive point data with bounded error[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2009, 131(1): 741-751.
[130] Feng H Y, Teng Z J. Iso-planar piecewise linear NC tool path generation from discrete measured data points[J]. Computer-Aided Design, 2005, 37(1): 55-64.
[131] Teng Z J, Feng H Y, Azeem A. Generating efficient tool paths from point cloud data via machining area segmentation[J]. International Journal of Advanced Manufacturing Technology, 2006, 30(3-4): 254-260.
[132] Rahman M S, Saleh T, Lim H S, et al. Development of an on-machine profile measurement system in ELID grinding for machining aspheric surface with software compensation[J]. International Journal of Machine Tools & Manufacture, 2008, 48(7-8): 887-895.
[133] Hwang Y, Kuriyagawa T, Lee S K. Wheel curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools & Manufacture, 2006, 46(15): 1929-1933.
[134] Chen F J, Yin S H, Huang H, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement[J]. International Journal of Machine Tools & Manufacture, 2010, 50(5): 480-486.
[135] Chen B, Guo B, Zhao Q L. On-machine precision form truing of arc-shaped diamond wheels[J]. Journal of Materials Processing Technology, 2015, 223: 65-74.
[136] Marinescu I D. Handbook of advanced ceramics machining[C]. CRC Press, 2007.
[137] Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision grinding[J]. CIRP Annals - Manufacturing Technology, 2010, 59(2): 652-671.
[138] 郭隐彪,杨炜,王振忠,等. 大口径光学元件超精密加工技术与应用[J]. 机械工程学报,2013,49(19):171-178.
[139] Lin X H, Wang Z Z, Guo Y B, et al. Research on the error analysis and compensation for the precision grinding of large aspheric mirror surface[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 233-239.
[140] 赵清亮,郭兵. 微结构光学功能元件模具的超精密磨削加工技术[J]. 机械工程学报,2011,47(21):177-185.
[141] Chen M J, Li Z, Yu B, et al. On-machine precision preparation and dressing of ball-headed diamond wheel for the grinding of fused silica[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5): 982-987.
[142] Xie J, Zhou R M, Xu J, et al. Form-truing error compensation of diamond grinding wheel in CNC envelope grinding of free-form surface[J]. International Journal of Advanced Manufacturing Technology, 2010, 48(9-12): 905-912.
[153] Stompe M, Von Witzendorff P, Cvetkovic S, et al. Concept for performance-enhancement of ultra-precision dicing for bulk hard and brittle materials in micro applications by laser dressing[J]. Microelectronic Engineering, 2012, 98: 544-547.
[144] Takagi J, Liu M. Fracture characteristics of grain cutting edges of CBN wheel in truing operation[J]. Journal of Materials Processing Technology, 1996, 62(4): 397-402.
[145] Sanchez J A, Pombo I, Cabanes I, et al. Electrical discharge truing of metal-bonded CBN wheels using single-point electrode[J]. International Journal of Machine Tools & Manufacture, 2008, 48(3-4): 362-370.
[146] Cai L R, Jia Y, Hu D J. Dressing of metal-bonded superabrasive grinding wheels by means of mist-jetting electrical discharge technology[J]. Journal of Materials Processing Technology, 2009, 209(2): 779-784.
[147] Itoh N, Ohmori H. Development of metal-free conductive bonded diamond wheel for environmentally-friendly electrolytic in-process dressing (ELID) grinding[J]. New Diamond and Frontier Carbon Technology, 2004, 14(4): 227-238.
[148] J G Cao, Y B Wu, D Lu. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools & Manufacture, 2014, 79: 49-61.
[149] Zhao B, Wu Y, Liu C.S. The study on ductile removal mechanisms of ultrasonic vibration grinding nano-ZrO2 ceramics[J]. Key Engineering Materials, 2006, 304-305: 171-175.
[150] Beaucamp A, Katsuura T, & Takata K. Process mechanism in ultrasonic cavitation assisted fluid jet polishing[J]. Cirp Annals, 2018. 67(1): 361-364.
[151] Teidelt E, Starcevic J, Popov V L. Influence of ultrasonic oscillation on static and sliding frication [J]. Tribology Letters, 2012, 48(1):51-62.
[152] 吴博达,常颖,杨志刚. 超声振动减摩性能的实验研究及理论分析[J]. 中国机械工程,2004,15(09):813-815.
[153] 黄明军,周铁英,巫庆华. 超声振动对摩擦力的影响[J]. 声学学报,2000, 25(02):115-119.
[154] Vezzoli E, Messaoud WB, Amberg M, et al. Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation[J]. IEEE Transactions on Haptics, 2017, 8(2): 235-239.
[155] 王艳,谢建华,刘建国. 基于瑞利分布的平面磨削温度场的仿真研究[J]. 中国机械工程,2015,26(4):484-490.
[156] Armarego E J, Brown R H. The machining of metals[M]. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
修改评论