中文版 | English
题名

Image Segmentation for Defect Analysis in Laser Powder Bed Fusion: Deep Data Mining of X-Ray Photography from Recent Literature

作者
通讯作者Rong, Yiming; Zou, Yu
发表日期
2022-09-01
DOI
发表期刊
ISSN
2193-9764
EISSN
2193-9772
卷号11页码:418-432
摘要
The in situ X-ray imaging method has attracted significant attention in the metal additive manufacturing community for characterizing keyhole dynamics and defect generation during laser-material interaction processes, particularly for laser powder bed fusion. Due to a high temporal and spatial resolution in this method, a vast volume of data are generated and collected, leading to a challenge for data processing and analysis. In this study, we present an accurate, robust, and powerful image analytical approach that can identify the high-fidelity automated features and extract important information from X-ray images. In total, we train six semantic segmentation models and six object detection models using 628 X-ray images obtained from two recent literature. Our study demonstrates that the U net + MobileNet model is the overall best choice among 12 models to recognize and extract desired regions, in terms of accuracy, time consumption, and dataset sensitivity. Using this model, we have collected and summarized geometric features and dynamic behaviors of the keyholes and generated bubbles. The image segmentation approach may pave the path for unveiling new mechanisms that might not be easily identified using conventional analysis methods in additive manufacturing processes.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Natural Sciences and Engineering Research Council of Canada (NSERC)[RGPIN-2018-05731] ; Centre for Analytics and Artificial Intelligence Engineering (CARTE)[NFRFE-2019-00603] ; NSERC Alliance Grants-Missions[ALLRP 570708-2021]
WOS研究方向
Engineering ; Materials Science
WOS类目
Engineering, Manufacturing ; Materials Science, Multidisciplinary
WOS记录号
WOS:000849277400001
出版者
EI入藏号
20223612696940
EI主题词
3D printers ; Additives ; Data handling ; Data mining ; Deep learning ; Defects ; Learning systems ; Object detection ; Semantic Segmentation
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Printing Equipment:745.1.1 ; Chemical Agents and Basic Industrial Chemicals:803 ; Materials Science:951
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395970
专题工学院_机械与能源工程系
作者单位
1.Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada
2.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
3.Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang, Jiahui,Lyu, Tianyi,Hua, Yujie,et al. Image Segmentation for Defect Analysis in Laser Powder Bed Fusion: Deep Data Mining of X-Ray Photography from Recent Literature[J]. Integrating Materials and Manufacturing Innovation,2022,11:418-432.
APA
Zhang, Jiahui.,Lyu, Tianyi.,Hua, Yujie.,Shen, Zeren.,Sun, Qiang.,...&Zou, Yu.(2022).Image Segmentation for Defect Analysis in Laser Powder Bed Fusion: Deep Data Mining of X-Ray Photography from Recent Literature.Integrating Materials and Manufacturing Innovation,11,418-432.
MLA
Zhang, Jiahui,et al."Image Segmentation for Defect Analysis in Laser Powder Bed Fusion: Deep Data Mining of X-Ray Photography from Recent Literature".Integrating Materials and Manufacturing Innovation 11(2022):418-432.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiahui]的文章
[Lyu, Tianyi]的文章
[Hua, Yujie]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiahui]的文章
[Lyu, Tianyi]的文章
[Hua, Yujie]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiahui]的文章
[Lyu, Tianyi]的文章
[Hua, Yujie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。