中文版 | English
题名

Overcoming volumetric locking in stable node-based smoothed particle finite element method with cubic bubble function and selective integration

作者
通讯作者Jin, Yin-Fu; Yin, Zhen-Yu
发表日期
2022-09-01
DOI
发表期刊
ISSN
0029-5981
EISSN
1097-0207
摘要
The stable node-based smoothed particle finite element method (SNS-PFEM) reduces spatial numerical oscillation from direct nodal integration in NS-PFEM but leads to a severe volumetric locking effect when modeling nearly incompressible materials-related boundary value problems. This study proposes an improved locking-free SNS-PFEM to investigate the performance of the bubble function and selective integration scheme in circumventing volumetric locking. Three locking-free variants of SNS-PFEM: (1) SNS-PFEM with a cubic bubble function (bSNS-PFEM), (2) SNS-PFEM with a selective integration scheme (selective SNS-PFEM), and (3) SNS-PFEM with a cubic bubble function and selective integration scheme (selective bSNS-PFEM)-were gradually developed for comparison. The performance of these three approaches was first successively examined using two examples with elastic materials, that is, an infinite plate with a circular hole and Cook's membrane. The comparisons show that the cubic bubble function and selective integration scheme are both necessary as a locking-free approach for modeling nearly incompressible materials, and the proposed selective bSNS-PFEM performs best among the three variants in terms of accuracy and convergence. Two examples of slope stability analysis and footing penetration on elastoplastic materials were then conducted by SNS-PFEM and the proposed selective bSNS-PFEM. The results indicate that the proposed selective bSNS-PFEM is stable and accurate, even when accompanied by significant deformation. All obtained results indicate that the locking-free selective bSNS-PFEM is a powerful approach for modeling nearly incompressible materials with both material and geometric nonlinearity.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China[R5037-18F] ; Project of Research Institute of Land and Space[CD78] ; Hong Kong Polytechnic University Strategic Importance Fund[ZE2T]
WOS研究方向
Engineering ; Mathematics
WOS类目
Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications
WOS记录号
WOS:000850125700001
出版者
EI入藏号
20223712727082
EI主题词
Elastoplasticity ; Finite element method ; Integral equations ; Integration ; Locks (fasteners) ; Numerical methods ; Slope stability
EI分类号
Roads and Streets:406.2 ; Calculus:921.2 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395981
专题工学院_海洋科学与工程系
作者单位
1.Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Guangdong, Peoples R China
2.Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Peoples R China
3.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Peoples R China
第一作者单位海洋科学与工程系
推荐引用方式
GB/T 7714
Wang, Ze-Yu,Jin, Yin-Fu,Yin, Zhen-Yu,et al. Overcoming volumetric locking in stable node-based smoothed particle finite element method with cubic bubble function and selective integration[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,2022.
APA
Wang, Ze-Yu,Jin, Yin-Fu,Yin, Zhen-Yu,&Wang, Yu-Ze.(2022).Overcoming volumetric locking in stable node-based smoothed particle finite element method with cubic bubble function and selective integration.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING.
MLA
Wang, Ze-Yu,et al."Overcoming volumetric locking in stable node-based smoothed particle finite element method with cubic bubble function and selective integration".INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Ze-Yu]的文章
[Jin, Yin-Fu]的文章
[Yin, Zhen-Yu]的文章
百度学术
百度学术中相似的文章
[Wang, Ze-Yu]的文章
[Jin, Yin-Fu]的文章
[Yin, Zhen-Yu]的文章
必应学术
必应学术中相似的文章
[Wang, Ze-Yu]的文章
[Jin, Yin-Fu]的文章
[Yin, Zhen-Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。