中文版 | English
题名

Optimizing resource allocation in service systems via simulation: A Bayesian formulation

作者
通讯作者Chen, Weiwei
发表日期
2022-09-01
DOI
发表期刊
ISSN
1059-1478
EISSN
1937-5956
卷号32期号:1
摘要
The service sector has become increasingly important in today's economy. To meet the rising expectation of high-quality services, efficiently allocating resources is vital for service systems to balance service qualities with costs. In particular, this paper focuses on a class of resource allocation problems where the service-level objective and constraints are in the form of probabilistic measures. Further, process complexity and system dynamics in service systems often render their performance evaluation and optimization challenging and relying on simulation models. To this end, we propose a generalized resource allocation model with probabilistic measures, and subsequently, develop an optimal computing budget allocation (OCBA) formulation to select the optimal solution subject to random noises in simulation. The OCBA formulation minimizes the expected opportunity cost that penalizes based on the quality of the selected solution. Further, the formulation takes a Bayesian approach to consider the prior knowledge and potential performance correlations on candidate solutions. Then, the asymptotic optimality conditions of the formulation are derived, and an iterative algorithm is developed accordingly. Numerical experiments and a case study inspired by a real-world problem in a hospital emergency department demonstrate the effectiveness of the proposed algorithm for solving the resource allocation problem via simulation.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[72091211] ; City University of Hong Kong["7005269","7005568"]
WOS研究方向
Engineering ; Operations Research & Management Science
WOS类目
Engineering, Manufacturing ; Operations Research & Management Science
WOS记录号
WOS:000849848600001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/395982
专题前沿与交叉科学研究院
工学院_计算机科学与工程系
作者单位
1.Rutgers State Univ, Dept Supply Chain Management, Piscataway, NJ 08854 USA
2.City Univ Hong Kong, Dept Adv Design & Syst Engn, Kowloon, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
5.Fudan Univ, Sch Management, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Chen, Weiwei,Gao, Siyang,Chen, Wenjie,et al. Optimizing resource allocation in service systems via simulation: A Bayesian formulation[J]. PRODUCTION AND OPERATIONS MANAGEMENT,2022,32(1).
APA
Chen, Weiwei,Gao, Siyang,Chen, Wenjie,&Du, Jianzhong.(2022).Optimizing resource allocation in service systems via simulation: A Bayesian formulation.PRODUCTION AND OPERATIONS MANAGEMENT,32(1).
MLA
Chen, Weiwei,et al."Optimizing resource allocation in service systems via simulation: A Bayesian formulation".PRODUCTION AND OPERATIONS MANAGEMENT 32.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Weiwei]的文章
[Gao, Siyang]的文章
[Chen, Wenjie]的文章
百度学术
百度学术中相似的文章
[Chen, Weiwei]的文章
[Gao, Siyang]的文章
[Chen, Wenjie]的文章
必应学术
必应学术中相似的文章
[Chen, Weiwei]的文章
[Gao, Siyang]的文章
[Chen, Wenjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。