题名 | Learning and Energy Efficient Edge Intelligence: Data Partition and Rate Control |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Communications (ICC)
|
ISSN | 1550-3607
|
ISBN | 978-1-5386-8348-4
|
会议录名称 | |
卷号 | 2022-May
|
页码 | 5353-5358
|
会议日期 | 16-20 May 2022
|
会议地点 | Seoul, Korea, Republic of
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The rapid development of artificial intelligence together with the powerful computation capabilities of the advanced edge servers make it possible to deploy learning tasks at the wireless network edge, which is dubbed as edge intelligence (EI). The communication bottleneck between the data resource and the server results in deteriorated learning performance as well as tremendous energy consumption. To tackle this challenge, we explore a new paradigm called learning-and-energy-efficient (LEE) EI, which simultaneously maximizes the learning accuracies and energy efficiencies of multiple tasks via data partition and rate control. Mathematically, this results in a multi-objective optimization problem. Moreover, the continuous varying rates introduce infinite variables, which further complicates the problem. To solve this complex problem, the number of variables is reduced to a finite level by exploiting the optimality of constant-rate transmission in each epoch, based on which a string-pulling (SP) algorithm is proposed to obtain the numerical values. The performance of the proposed joint data partition and rate control design is examined by experiments based on public datasets. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2019YFB1802800]
|
WOS研究方向 | Telecommunications
|
WOS类目 | Telecommunications
|
WOS记录号 | WOS:000864709905091
|
EI入藏号 | 20223712710811
|
EI主题词 | Data handling
; Energy utilization
; Multiobjective optimization
|
EI分类号 | Energy Conservation:525.2
; Energy Utilization:525.3
; Data Processing and Image Processing:723.2
; Optimization Techniques:921.5
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9838801 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401484 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Shenzhen Research Institute of Big Data, Shenzhen, China 3.The University of Hong Kong, Hong Kong |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xiaoyang Li,Shuai Wang,Guangxu Zhu,et al. Learning and Energy Efficient Edge Intelligence: Data Partition and Rate Control[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:5353-5358.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论