中文版 | English
题名

Learning and Energy Efficient Edge Intelligence: Data Partition and Rate Control

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Communications (ICC)
ISSN
1550-3607
ISBN
978-1-5386-8348-4
会议录名称
卷号
2022-May
页码
5353-5358
会议日期
16-20 May 2022
会议地点
Seoul, Korea, Republic of
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The rapid development of artificial intelligence together with the powerful computation capabilities of the advanced edge servers make it possible to deploy learning tasks at the wireless network edge, which is dubbed as edge intelligence (EI). The communication bottleneck between the data resource and the server results in deteriorated learning performance as well as tremendous energy consumption. To tackle this challenge, we explore a new paradigm called learning-and-energy-efficient (LEE) EI, which simultaneously maximizes the learning accuracies and energy efficiencies of multiple tasks via data partition and rate control. Mathematically, this results in a multi-objective optimization problem. Moreover, the continuous varying rates introduce infinite variables, which further complicates the problem. To solve this complex problem, the number of variables is reduced to a finite level by exploiting the optimality of constant-rate transmission in each epoch, based on which a string-pulling (SP) algorithm is proposed to obtain the numerical values. The performance of the proposed joint data partition and rate control design is examined by experiments based on public datasets.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D Program of China[2019YFB1802800]
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:000864709905091
EI入藏号
20223712710811
EI主题词
Data handling ; Energy utilization ; Multiobjective optimization
EI分类号
Energy Conservation:525.2 ; Energy Utilization:525.3 ; Data Processing and Image Processing:723.2 ; Optimization Techniques:921.5
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9838801
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401484
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Shenzhen Research Institute of Big Data, Shenzhen, China
3.The University of Hong Kong, Hong Kong
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xiaoyang Li,Shuai Wang,Guangxu Zhu,et al. Learning and Energy Efficient Edge Intelligence: Data Partition and Rate Control[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:5353-5358.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoyang Li]的文章
[Shuai Wang]的文章
[Guangxu Zhu]的文章
百度学术
百度学术中相似的文章
[Xiaoyang Li]的文章
[Shuai Wang]的文章
[Guangxu Zhu]的文章
必应学术
必应学术中相似的文章
[Xiaoyang Li]的文章
[Shuai Wang]的文章
[Guangxu Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。