题名 | SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing |
作者 | |
通讯作者 | Zhou, Long |
发表日期 | 2022
|
会议名称 | 60th Annual Meeting of the Association-for-Computational-Linguistics (ACL)
|
会议录名称 | |
会议日期 | MAY 22-27, 2022
|
会议地点 | null,Dublin,IRELAND
|
出版地 | 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
|
出版者 | |
摘要 | Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Linguistics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Linguistics
|
WOS记录号 | WOS:000828702305058
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:28
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401486 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 2.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China 3.Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China 4.Microsoft, Redmond, WA 98052 USA 5.Peng Cheng Lab, Shenzhen, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ao, Junyi,Wang, Rui,Zhou, Long,et al. SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论