中文版 | English
题名

Accelerating Edge Intelligence via Integrated Sensing and Communication

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Communications (ICC)
ISSN
1550-3607
ISBN
978-1-5386-8348-4
会议录名称
卷号
2022-May
页码
1586-1592
会议日期
16-20 May 2022
会议地点
Seoul, Korea, Republic of
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Realizing edge intelligence consists of sensing, communication, training, and inference stages. Conventionally, the sensing and communication stages are executed sequentially, which results in excessive amount of dataset generation and up-loading time. This paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC). As such, the sensing and communication stages are merged so as to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. However, ISAC also introduces additional interference between sensing and communication functionalities. To address this challenge, this paper proposes a classification error minimization formulation to design the ISAC beamforming and time allocation. The globally optimal solution is derived via the rank-1 guaranteed semidefinite relaxation, and performance analysis is performed to quantify the ISAC gain over that of conventional edge intelligence. Simulation results are provided to verify the effectiveness of the proposed ISAC-assisted edge intelligence system. Interestingly, we find that ISAC is always beneficial, when the duration of generating a sample is more than the duration of uploading a sample. Otherwise, the ISAC gain can vanish or even be negative. Nevertheless, we still derive a sufficient condition, under which a positive ISAC gain is feasible.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Guangdong Youth Innovative Talent Project[2020KQNCX063]
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:000864709901151
EI入藏号
20223712710875
EI分类号
Electromagnetic Waves in Relation to Various Structures:711.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9839016
引用统计
被引频次[WOS]:22
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401488
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
3.Shenzhen Research Institute of Big Data, Shenzhen, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Tong Zhang,Shuai Wang,Guoliang Li,et al. Accelerating Edge Intelligence via Integrated Sensing and Communication[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1586-1592.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tong Zhang]的文章
[Shuai Wang]的文章
[Guoliang Li]的文章
百度学术
百度学术中相似的文章
[Tong Zhang]的文章
[Shuai Wang]的文章
[Guoliang Li]的文章
必应学术
必应学术中相似的文章
[Tong Zhang]的文章
[Shuai Wang]的文章
[Guoliang Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。