题名 | Accelerating Edge Intelligence via Integrated Sensing and Communication |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Communications (ICC)
|
ISSN | 1550-3607
|
ISBN | 978-1-5386-8348-4
|
会议录名称 | |
卷号 | 2022-May
|
页码 | 1586-1592
|
会议日期 | 16-20 May 2022
|
会议地点 | Seoul, Korea, Republic of
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Realizing edge intelligence consists of sensing, communication, training, and inference stages. Conventionally, the sensing and communication stages are executed sequentially, which results in excessive amount of dataset generation and up-loading time. This paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC). As such, the sensing and communication stages are merged so as to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. However, ISAC also introduces additional interference between sensing and communication functionalities. To address this challenge, this paper proposes a classification error minimization formulation to design the ISAC beamforming and time allocation. The globally optimal solution is derived via the rank-1 guaranteed semidefinite relaxation, and performance analysis is performed to quantify the ISAC gain over that of conventional edge intelligence. Simulation results are provided to verify the effectiveness of the proposed ISAC-assisted edge intelligence system. Interestingly, we find that ISAC is always beneficial, when the duration of generating a sample is more than the duration of uploading a sample. Otherwise, the ISAC gain can vanish or even be negative. Nevertheless, we still derive a sufficient condition, under which a positive ISAC gain is feasible. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Guangdong Youth Innovative Talent Project[2020KQNCX063]
|
WOS研究方向 | Telecommunications
|
WOS类目 | Telecommunications
|
WOS记录号 | WOS:000864709901151
|
EI入藏号 | 20223712710875
|
EI分类号 | Electromagnetic Waves in Relation to Various Structures:711.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9839016 |
引用统计 |
被引频次[WOS]:22
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401488 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China 2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 3.Shenzhen Research Institute of Big Data, Shenzhen, China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Tong Zhang,Shuai Wang,Guoliang Li,et al. Accelerating Edge Intelligence via Integrated Sensing and Communication[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1586-1592.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论