题名 | DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction (Extended abstract) |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | 38th IEEE International Conference on Data Engineering (ICDE)
|
ISSN | 1063-6382
|
ISBN | 978-1-6654-0884-4
|
会议录名称 | |
页码 | 1519-1520
|
会议日期 | 9-12 May 2022
|
会议地点 | Kuala Lumpur, Malaysia
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Predicting the density and flow of the crowd at a citywide level is significant for city management. By meshing a large urban area to a number of fine-grained mesh-grids, citywide crowd and traffic information in a continuous time period can be represented with 4D tensor (Timestep, Height, Width, Channel). Based on this, we revisit the density and in-out flow prediction problem and publish a new aggregated human mobility dataset generated from a real-world smartphone application. Compared with the existing ones, our dataset has larger mesh-grid number, finer-grained mesh size, and higher user sample. Towards such kind of large-scale crowd dataset, we propose a novel deep learning model called DeepCrowd by designing pyramid architectures and high-dimensional attention mechanism based on Convolutional LSTM. Both the datasets and codes are made available at https://github.com/deepkashiwa20/DeepCrowd. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000855078401060
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9835600 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401489 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology 2.Center for Spatial Information Science, University of Tokyo 3.Yahoo Japan Corporation |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Renhe Jiang,Zekun Cai,Zhaonan Wang,et al. DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction (Extended abstract)[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:1519-1520.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论