中文版 | English
题名

In Pursuit of the Best Detection of Positive Data Under User’s Concern on False Alarm

作者
DOI
发表日期
2022
ISBN
978-1-6654-7046-9
会议录名称
页码
337-345
会议日期
15-17 July 2022
会议地点
Wuhan, China
摘要
Just-In-Time Software Defect Predict (JIT-SDP) has been a popular research topic in the literature of software engineering. In many practical scenarios, software engineers would prefer to pursue the best detection of defect-inducing software changes under the concern of a given false alarm tolerance. However, there have been only two related studies in the Machine Learning (ML) community that are capable of tackling this constraint optimization problem. This paper aims to study how can we utilize the existing ML methods for addressing the research problem in JIT-SDP and how well do they perform on it. Considering the fact that the objective and the constraint are not differentiable, a Differential Evolution (DE) algorithm is by nature suitable for tackling this research problem. Thus, this paper also aims to investigate how can we propose a novel DE algorithm to better address the constraint optimization problem in JIT-SDP. With these aims in mind, this paper adapts the ML methods with a spared validation set to facilitate the constraint learning process, and it also proposes an advanced DE algorithm with an adaptive constraint to pursue the best detection of the positive class under a given false alarm. Experimental results with 10 real-world data sets from the domain of software defect prediction demonstrate that our proposed DE based approach can achieve generally better performance on the constraint optimization problem, deriving better classification models in terms of both objective and the constraint.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20223412604129
EI主题词
Alarm systems ; Classification (of information) ; Constrained optimization ; Defects ; Errors ; Evolutionary algorithms ; Forecasting ; Just in time production ; Learning algorithms ; Machine learning
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Materials Science:951 ; Systems Science:961
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9837710
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401493
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, China, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Cong Teng,Liyan Song. In Pursuit of the Best Detection of Positive Data Under User’s Concern on False Alarm[C],2022:337-345.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cong Teng]的文章
[Liyan Song]的文章
百度学术
百度学术中相似的文章
[Cong Teng]的文章
[Liyan Song]的文章
必应学术
必应学术中相似的文章
[Cong Teng]的文章
[Liyan Song]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。