中文版 | English
题名

Grouped spatial autoregressive model

作者
通讯作者Hu, Wei; Zhang, Bo
发表日期
2023-02-01
DOI
发表期刊
ISSN
0167-9473
EISSN
1872-7352
卷号178
摘要
With the development of the internet, network data with replications can be collected at different time points. The spatial autoregressive panel (SARP) model is a useful tool for analyzing such network data. However, in the traditional SARP model, all individuals are assumed to be homogeneous in their network autocorrelation coefficients, while in practice, correlations could differ for the nodes in different groups. Here, a grouped spatial autoregressive (GSAR) model based on the SARP model is proposed to permit network autocorrelation heterogeneity among individuals, while analyzing network data with independent replications across different time points and strong spatial effects. Each individual in the network belongs to a latent specific group, which is characterized by a set of parameters. Two estimation methods are studied: two-step naive least-squares estimator, and two-step conditional least-squares estimator. Furthermore, their corresponding asymptotic properties and technical conditions are investigated. To demonstrate the performance of the proposed GSAR model and its corresponding estimation methods, numerical analysis was performed on simulated and real data.(c) 2022 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["12071477","11701560","71873137"]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000853215400001
出版者
EI入藏号
20223712729655
EI主题词
Least squares approximations ; Numerical methods
EI分类号
Mathematics:921 ; Numerical Methods:921.6
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401500
专题理学院_统计与数据科学系
作者单位
1.Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
2.Renmin Univ China, Sch Stat, Beijing, Peoples R China
3.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
4.Renmin Univ China, Beijing 100872, Peoples R China
推荐引用方式
GB/T 7714
Huang, Danyang,Hu, Wei,Jing, Bingyi,et al. Grouped spatial autoregressive model[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2023,178.
APA
Huang, Danyang,Hu, Wei,Jing, Bingyi,&Zhang, Bo.(2023).Grouped spatial autoregressive model.COMPUTATIONAL STATISTICS & DATA ANALYSIS,178.
MLA
Huang, Danyang,et al."Grouped spatial autoregressive model".COMPUTATIONAL STATISTICS & DATA ANALYSIS 178(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Danyang]的文章
[Hu, Wei]的文章
[Jing, Bingyi]的文章
百度学术
百度学术中相似的文章
[Huang, Danyang]的文章
[Hu, Wei]的文章
[Jing, Bingyi]的文章
必应学术
必应学术中相似的文章
[Huang, Danyang]的文章
[Hu, Wei]的文章
[Jing, Bingyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。