中文版 | English
题名

Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks: A Deep Learning Approach

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Communications (ICC)
ISSN
1550-3607
ISBN
978-1-5386-8348-4
会议录名称
卷号
2022-May
页码
1948-1954
会议日期
16-20 May 2022
会议地点
Seoul, Korea, Republic of
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The implementation of integrated sensing and communication (ISAC) highly depends on the effective beamforming design exploiting accurate instantaneous channel state information (ICSI). However, channel tracking in ISAC requires large amount of training overhead and prohibitively large computational complexity. To address this problem, in this paper, we focus on ISAC-assisted vehicular networks and exploit a deep learning approach to implicitly learn the features of historical channels and directly predict the beamforming matrix for the next time slot to maximize the average achievable sum-rate of system, thus bypassing the need of explicit channel tracking for reducing the system signaling overhead. To this end, a general sum-rate maximization problem with Cramer-Rao lower bounds-based sensing constraints is first formulated for the considered ISAC system. Then, a historical channels-based convolutional long short-term memory network is designed for predictive beamforming that can exploit the spatial and temporal dependencies of communication channels to further improve the learning performance. Finally, simulation results show that the proposed method can satisfy the requirement of sensing performance, while its achievable sum-rate can approach the upper bound obtained by a genie-aided scheme with perfect ICSI available.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[61801082]
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:000864709902042
EI入藏号
20223712710859
EI主题词
Channel state information ; Deep learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Electromagnetic Waves in Relation to Various Structures:711.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9839000
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401502
专题工学院_电子与电气工程系
作者单位
1.State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, China
3.School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia
4.School of Electrical and Information Engineering, University of Sydney, Sydney, Australia
推荐引用方式
GB/T 7714
Chang Liu,Weijie Yuan,Shuangyang Li,et al. Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks: A Deep Learning Approach[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1948-1954.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chang Liu]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
百度学术
百度学术中相似的文章
[Chang Liu]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
必应学术
必应学术中相似的文章
[Chang Liu]的文章
[Weijie Yuan]的文章
[Shuangyang Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。