中文版 | English
题名

Understanding How Fundus Image Quality Degradation Affects CNN-based Diagnosis

作者
DOI
发表日期
2022
ISSN
2375-7477
ISBN
978-1-7281-2783-5
会议录名称
页码
438-442
会议日期
11-15 July 2022
会议地点
Glasgow, Scotland, United Kingdom
摘要
Quality degradation (QD) is common in the fundus images collected from the clinical environment. Although diagnosis models based on convolutional neural networks (CNN) have been extensively used to interpret retinal fundus images, their performances under QD have not been assessed. To understand the effects of QD on the performance of CNN-based diagnosis model, a systematical study is proposed in this paper. In our study, the QD of fundus images is controlled by independently or simultaneously importing quantified interferences (e.g., image blurring, retinal artifacts, and light transmission disturbance). And the effects of diabetic retinopathy (DR) grading systems are thus analyzed according to the diagnosis performances on the degraded images. With images degraded by quantified interferences, several CNN-based DR grading models (e.g., AlexNet, SqueezeNet, VGG, DenseNet, and ResNet) are evaluated. The experiments demonstrate that image blurring causes a significant decrease in performance, while the impacts from light transmission disturbance and retinal artifacts are relatively slight. Superior performances are achieved by VGG, DenseNet, and ResNet in the absence of image degradation, and their robustness is presented under the controlled degradation.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871507
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401509
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Haofeng Liu,Haojin Li,Xiaoxuan Wang,et al. Understanding How Fundus Image Quality Degradation Affects CNN-based Diagnosis[C],2022:438-442.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haofeng Liu]的文章
[Haojin Li]的文章
[Xiaoxuan Wang]的文章
百度学术
百度学术中相似的文章
[Haofeng Liu]的文章
[Haojin Li]的文章
[Xiaoxuan Wang]的文章
必应学术
必应学术中相似的文章
[Haofeng Liu]的文章
[Haojin Li]的文章
[Xiaoxuan Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。