题名 | Zinc-Alloyed HFO2 Synaptic RRAM with Operating Voltage and Switching Energy Enhancement |
作者 | |
通讯作者 | Yida Li |
DOI | |
发表日期 | 2022
|
会议名称 | 2022 IEEE CSTIC
|
ISBN | 978-1-6654-9759-6
|
会议录名称 | |
页码 | 1-3
|
会议日期 | 20-21 June 2022
|
会议地点 | Shanghai, China
|
摘要 | In this work, we demonstrate the performance engineering of a HfO2-based analog RRAM device based on a Zn alloying approach using ALD. The Zn-alloyed HfO2 RRAM results in a significant smaller operating voltages and lower switching energy due to the increase in oxygen vacancies elucidated via XPS measurements. Meanwhile, its retention at 85 °C can exceed that of 105 s. The LTP and LTD of the Zn-alloyed RRAM shows good linearity for the implementation of artificial neural network in handwriting recognition. Our results provide a pathway for RRAM to meet the requirements of emerging embedded memory applications for analog computing. |
关键词 | |
学校署名 | 第一
; 通讯
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20223712740163
|
EI主题词 | Character Recognition
; Hafnium Oxides
; Neural Networks
; Zinc Alloys
|
EI分类号 | Zinc And Alloys:546.3
; Data Storage, Equipment And Techniques:722.1
; Chemical Products Generally:804
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9856852 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401511 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Shenzhen Longsys Electronics Co., Ltd, Shenzhen, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Jun Lan,Quanzhou Zhu,Yiyang Zhang,et al. Zinc-Alloyed HFO2 Synaptic RRAM with Operating Voltage and Switching Energy Enhancement[C],2022:1-3.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论