中文版 | English
题名

Channel-Wise and Spatial Feature Recalibration Network for Nuclear Cataract Classification

作者
DOI
发表日期
2022
ISSN
1945-7871
ISBN
978-1-6654-8564-7
会议录名称
卷号
2022-July
页码
1-6
会议日期
18-22 July 2022
会议地点
Taipei, Taiwan
摘要
Nuclear cataract (NC) is a prior age-related disease for blindness and vision impairment globally. Anterior segment optical coherence tomography (AS-OCT) image is a new ophthalmology image, which can capture the lens nucleus region clearly compared with other ophthalmic images, e.g., slit lamp images. Clinical research has suggested that features e.g., mean from AS-OCT images have varying correlations with NC severity levels. However, existing convolutional neural network (CNN) based NC classification works have not incorporated the clinical features into the network design to improve the performance. To this end, we propose a novel channel-wise and spatial feature recalibration network (CSFR-Net) to predict NC severity levels automatically, which is built on a stack of channel-wise and spatial feature recalibration (CSFR) modules. In each CSFR module, we construct a channel-wise feature recalibration block and a spatial feature recalibration block to recalibrate intermediate feature maps dynamically. This feature recalibration strategy enables CSFR-Net to highlight feature representations and suppress unnecessary ones in a global-and-local manner. We conduct extensive experiments on a clinical AS-OCT image dataset and CIFAR benchmarks. The results show that our CSFR-Net achieves better performance than state-of-the-art methods with less model complexity.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20223712732775
EI主题词
Classification (of information) ; Computer vision ; Convolutional neural networks ; Image segmentation ; Lenses ; Medical imaging ; Optical tomography
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Vision:741.2 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Information Sources and Analysis:903.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9860008
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401513
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhe, China
2.State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
3.Tomey Corporation, Japan
4.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Xiaoqing Zhang,Gelei Xu,Junyong Shen,et al. Channel-Wise and Spatial Feature Recalibration Network for Nuclear Cataract Classification[C],2022:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoqing Zhang]的文章
[Gelei Xu]的文章
[Junyong Shen]的文章
百度学术
百度学术中相似的文章
[Xiaoqing Zhang]的文章
[Gelei Xu]的文章
[Junyong Shen]的文章
必应学术
必应学术中相似的文章
[Xiaoqing Zhang]的文章
[Gelei Xu]的文章
[Junyong Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。