题名 | Channel-Wise and Spatial Feature Recalibration Network for Nuclear Cataract Classification |
作者 | |
DOI | |
发表日期 | 2022
|
ISSN | 1945-7871
|
ISBN | 978-1-6654-8564-7
|
会议录名称 | |
卷号 | 2022-July
|
页码 | 1-6
|
会议日期 | 18-22 July 2022
|
会议地点 | Taipei, Taiwan
|
摘要 | Nuclear cataract (NC) is a prior age-related disease for blindness and vision impairment globally. Anterior segment optical coherence tomography (AS-OCT) image is a new ophthalmology image, which can capture the lens nucleus region clearly compared with other ophthalmic images, e.g., slit lamp images. Clinical research has suggested that features e.g., mean from AS-OCT images have varying correlations with NC severity levels. However, existing convolutional neural network (CNN) based NC classification works have not incorporated the clinical features into the network design to improve the performance. To this end, we propose a novel channel-wise and spatial feature recalibration network (CSFR-Net) to predict NC severity levels automatically, which is built on a stack of channel-wise and spatial feature recalibration (CSFR) modules. In each CSFR module, we construct a channel-wise feature recalibration block and a spatial feature recalibration block to recalibrate intermediate feature maps dynamically. This feature recalibration strategy enables CSFR-Net to highlight feature representations and suppress unnecessary ones in a global-and-local manner. We conduct extensive experiments on a clinical AS-OCT image dataset and CIFAR benchmarks. The results show that our CSFR-Net achieves better performance than state-of-the-art methods with less model complexity. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20223712732775
|
EI主题词 | Classification (of information)
; Computer vision
; Convolutional neural networks
; Image segmentation
; Lenses
; Medical imaging
; Optical tomography
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory and Signal Processing:716.1
; Computer Applications:723.5
; Vision:741.2
; Optical Devices and Systems:741.3
; Imaging Techniques:746
; Information Sources and Analysis:903.1
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9860008 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401513 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhe, China 2.State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China 3.Tomey Corporation, Japan 4.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Xiaoqing Zhang,Gelei Xu,Junyong Shen,et al. Channel-Wise and Spatial Feature Recalibration Network for Nuclear Cataract Classification[C],2022:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论