中文版 | English
题名

BaseFormer: Transformer based Base-Caller for Fast and Accurate Next Generation Sequencing

作者
DOI
发表日期
2022
ISSN
2375-7477
ISBN
978-1-7281-2783-5
会议录名称
页码
463-466
会议日期
11-15 July 2022
会议地点
Glasgow, Scotland, United Kingdom
摘要
Gene sequencing technology is a tool which greatly impacts modern biology and medicine. The next-generation sequencing (NGS) lies at the heart of gene sequencing for its massively increasing throughput, but it is difficult to analyze the large quantities of fluorescent images with high accuracy because the fluorescent signals are weak with varying noise signals, and current designs are limited on accuracy and speed. In this paper, we proposed a novel deep learning based gene sequencing pipeline with semi-automatic labelling method. The obtained results are promising, especially on the high-density data, as the BaseFormer surpasses the traditional methods in terms of cluster quality (Q30: 88 %), throughput (16.5% better), and with similar and low error rate (down to 0.137% on average, best at 0.068 % on high-density data).
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871730
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401514
专题工学院_深港微电子学院
作者单位
School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Shuwei Li,Zhiru Guo,Ao Shen,et al. BaseFormer: Transformer based Base-Caller for Fast and Accurate Next Generation Sequencing[C],2022:463-466.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shuwei Li]的文章
[Zhiru Guo]的文章
[Ao Shen]的文章
百度学术
百度学术中相似的文章
[Shuwei Li]的文章
[Zhiru Guo]的文章
[Ao Shen]的文章
必应学术
必应学术中相似的文章
[Shuwei Li]的文章
[Zhiru Guo]的文章
[Ao Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。