题名 | Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images |
作者 | |
通讯作者 | Tang, Xiaoying |
DOI | |
发表日期 | 2022
|
会议名称 | 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC)
|
ISSN | 2375-7477
|
ISBN | 978-1-7281-2783-5
|
会议录名称 | |
页码 | 5062-5065
|
会议日期 | 11-15 July 2022
|
会议地点 | Glasgow, Scotland, United Kingdom
|
摘要 | Multi-modality magnetic resonance (MR) images provide complementary information for disease diagnoses. However, modality missing is quite usual in real-life clinical practice. Current methods usually employ convolution-based generative adversarial network (GAN) or its variants to synthesize the missing modality. With the development of vision transformer, we explore its application in the MRI modality synthesis task in this work. We propose a novel supervised deep learning method for synthesizing a missing modality, making use of a transformer-based encoder. Specifically, a model is trained for translating 2D MR images from T1-weighted to T2-weighted based on conditional GAN (cGAN). We replace the encoder with transformer and input adjacent slices to enrich spatial prior knowledge. Experimental results on a private dataset and a public dataset demonstrate that our proposed model outperforms state-of-the-art supervised methods for MR image synthesis, both quantitatively and qualitatively. Clinical relevance— This work proposes a method to synthesize T2-weighted images from T1-weighted ones to address the modality missing issue in MRI. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871183 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401519 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China 2.Department of Electronic and Electrical Engineering, The University of Hong Kong, Hong Kong, China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Pan, Kai,Cheng, Pujin,Huang, Ziqi,et al. Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images[C],2022:5062-5065.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论