中文版 | English
题名

Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2022
会议名称
44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC)
ISSN
2375-7477
ISBN
978-1-7281-2783-5
会议录名称
页码
5062-5065
会议日期
11-15 July 2022
会议地点
Glasgow, Scotland, United Kingdom
摘要
Multi-modality magnetic resonance (MR) images provide complementary information for disease diagnoses. However, modality missing is quite usual in real-life clinical practice. Current methods usually employ convolution-based generative adversarial network (GAN) or its variants to synthesize the missing modality. With the development of vision transformer, we explore its application in the MRI modality synthesis task in this work. We propose a novel supervised deep learning method for synthesizing a missing modality, making use of a transformer-based encoder. Specifically, a model is trained for translating 2D MR images from T1-weighted to T2-weighted based on conditional GAN (cGAN). We replace the encoder with transformer and input adjacent slices to enrich spatial prior knowledge. Experimental results on a private dataset and a public dataset demonstrate that our proposed model outperforms state-of-the-art supervised methods for MR image synthesis, both quantitatively and qualitatively. Clinical relevance— This work proposes a method to synthesize T2-weighted images from T1-weighted ones to address the modality missing issue in MRI.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871183
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401519
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Electronic and Electrical Engineering, The University of Hong Kong, Hong Kong, China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Pan, Kai,Cheng, Pujin,Huang, Ziqi,et al. Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images[C],2022:5062-5065.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan, Kai]的文章
[Cheng, Pujin]的文章
[Huang, Ziqi]的文章
百度学术
百度学术中相似的文章
[Pan, Kai]的文章
[Cheng, Pujin]的文章
[Huang, Ziqi]的文章
必应学术
必应学术中相似的文章
[Pan, Kai]的文章
[Cheng, Pujin]的文章
[Huang, Ziqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。