中文版 | English
题名

Utilizing Average Symmetrical Surface Distance in Active Shape Modeling for Subcortical Surface Generation with Slow-fast Learning

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2022
会议名称
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC)
ISSN
2375-7477
ISBN
978-1-7281-2783-5
会议录名称
页码
230-233
会议日期
11-15 July 2022
会议地点
Glasgow, Scotland, United Kingdom
摘要
In this paper, we propose and validate an automatic pipeline for subcortical surface generation by making use of the average symmetrical surface distance (ASSD) loss in active shape modeling (ASM). A group of template surfaces are first generated via large deformation diffeomorphic metric mapping based surface deformation. ASM is then employed to obtain the mean shape and shape variation parameters of the template surfaces. To obtain the optimal shape variation parameters which best fit the target structure after acting upon the mean shape, a recently proposed derivative-free optimization method (the slow-fast learning method) is adopted. The ASSD loss, in addition to the typically utilized Dice similarity coefficient loss, is employed during the learning process to help enhance the boundary accuracy. We successfully validate the importance of the ASSD loss through ablation analysis. In addition, we show the effectiveness of the slow-fast learning method by comparing it with other state-of-the-art derivative-free optimization algorithms. Our proposed pipeline is found to be capable of yielding subcortical surfaces with high accuracy, correct anatomical topology, and sufficient smoothness. Clinical Relevance- This work provides a useful tool for generating subcortical surfaces which are important biomarkers for a variety of brain disorders.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
收录类别
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871829
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401529
专题工学院_电子与电气工程系
工学院_计算机科学与工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhong, Pinyuan,Cheng, Ran,Tang, Xiaoying. Utilizing Average Symmetrical Surface Distance in Active Shape Modeling for Subcortical Surface Generation with Slow-fast Learning[C],2022:230-233.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhong, Pinyuan]的文章
[Cheng, Ran]的文章
[Tang, Xiaoying]的文章
百度学术
百度学术中相似的文章
[Zhong, Pinyuan]的文章
[Cheng, Ran]的文章
[Tang, Xiaoying]的文章
必应学术
必应学术中相似的文章
[Zhong, Pinyuan]的文章
[Cheng, Ran]的文章
[Tang, Xiaoying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。