中文版 | English
题名

SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning

作者
DOI
发表日期
2022
会议名称
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
2160-7508
ISBN
978-1-6654-8740-5
会议录名称
卷号
2022-June
页码
4090-4099
会议日期
19-20 June 2022
会议地点
New Orleans, LA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Class-imbalanced datasets can severely deteriorate the performance of semi-supervised learning (SSL). This is due to the confirmation bias especially when the pseudo labels are highly biased towards the majority classes. Traditional resampling or reweighting techniques may not be directly applicable when the unlabeled data distribution is unknown. Inspired by the threshold-moving method that performs well in supervised learning-based binary classification tasks, we provide a simple yet effective scheme to address the multiclass imbalance issue of SSL. This scheme, named SaR, is a Self-adaptive Refinement of soft labels before generating pseudo labels. The pseudo labels generated post-SaR will be less biased, resulting in higher quality data for training the classifier. We show that SaR can consistently improve recent consistency-based SSL algorithms on various image classification problems across different imbalanced ratios. We also show that SaR is robust to the situations where unlabeled data have different distributions as labeled data. Hence, SaR does not rely on the assumptions that unlabeled data share the same distribution as the labeled data.

关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
NSF HDR:TRIPODS[CCF-1934568]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000861612704011
EI入藏号
20223712740727
EI主题词
Computer Vision ; Semi-supervised Learning
EI分类号
Computer Applications:723.5 ; Vision:741.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9857421
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401556
专题南方科技大学
作者单位
1.University of California Davis
2.Southern University of Science and Technology
3.University of Kentucky
推荐引用方式
GB/T 7714
Zhengfeng Lai,Chao Wang,Sen-ching Cheung,et al. SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:4090-4099.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
22_cvpr_SaR.pdf(3850KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhengfeng Lai]的文章
[Chao Wang]的文章
[Sen-ching Cheung]的文章
百度学术
百度学术中相似的文章
[Zhengfeng Lai]的文章
[Chao Wang]的文章
[Sen-ching Cheung]的文章
必应学术
必应学术中相似的文章
[Zhengfeng Lai]的文章
[Chao Wang]的文章
[Sen-ching Cheung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。