题名 | SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
|
ISSN | 2160-7508
|
ISBN | 978-1-6654-8740-5
|
会议录名称 | |
卷号 | 2022-June
|
页码 | 4090-4099
|
会议日期 | 19-20 June 2022
|
会议地点 | New Orleans, LA, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Class-imbalanced datasets can severely deteriorate the performance of semi-supervised learning (SSL). This is due to the confirmation bias especially when the pseudo labels are highly biased towards the majority classes. Traditional resampling or reweighting techniques may not be directly applicable when the unlabeled data distribution is unknown. Inspired by the threshold-moving method that performs well in supervised learning-based binary classification tasks, we provide a simple yet effective scheme to address the multiclass imbalance issue of SSL. This scheme, named SaR, is a Self-adaptive Refinement of soft labels before generating pseudo labels. The pseudo labels generated post-SaR will be less biased, resulting in higher quality data for training the classifier. We show that SaR can consistently improve recent consistency-based SSL algorithms on various image classification problems across different imbalanced ratios. We also show that SaR is robust to the situations where unlabeled data have different distributions as labeled data. Hence, SaR does not rely on the assumptions that unlabeled data share the same distribution as the labeled data. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | NSF HDR:TRIPODS[CCF-1934568]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000861612704011
|
EI入藏号 | 20223712740727
|
EI主题词 | Computer Vision
; Semi-supervised Learning
|
EI分类号 | Computer Applications:723.5
; Vision:741.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9857421 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401556 |
专题 | 南方科技大学 |
作者单位 | 1.University of California Davis 2.Southern University of Science and Technology 3.University of Kentucky |
推荐引用方式 GB/T 7714 |
Zhengfeng Lai,Chao Wang,Sen-ching Cheung,et al. SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:4090-4099.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
22_cvpr_SaR.pdf(3850KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论