中文版 | English
题名

Rank-Based Filter Pruning for Real-Time UAV Tracking

作者
通讯作者Shuiwang Li
共同第一作者Xucheng Wang; Dan Zeng
DOI
发表日期
2022
会议名称
2022 IEEE International Conference on Multimedia and Expo (ICME)
ISSN
1945-7871
ISBN
978-1-6654-8564-7
会议录名称
卷号
2022-July
页码
01-06
会议日期
18-22 July 2022
会议地点
Taipei, Taiwan
摘要
Unmanned aerial vehicle (UAV) tracking has wide poten-tial applications in such as agriculture, navigation, and public security. However, the limitations of computing resources, battery capacity, and maximum load of UAV hinder the de-ployment of deep learning-based tracking algorithms on UAV. Consequently, discriminative correlation filters (DCF) track-ers stand out in the UAV tracking community because of their high efficiency. However, their precision is usually much lower than trackers based on deep learning. Model compression is a promising way to narrow the gap (i.e., effciency, precision) between DCF- and deep learning- based trackers, which has not caught much attention in UAV tracking. In this paper, we propose the P-SiamFC++ tracker, which is the first to use rank-based filter pruning to compress the SiamFC++ model, achieving a remarkable balance between efficiency and precision. Our method is general and may encourage further studies on UAV tracking with model compression. Extensive experiments on four UAV benchmarks, including UAV123@10fps, DTB70, UAVDT and Vistrone2018, show that P-SiamFC++ tracker significantly outperforms state-of-the-art UAV tracking methods.
关键词
学校署名
共同第一 ; 其他
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20223712732827
EI主题词
Air Navigation ; Aircraft Detection ; Antennas ; Deep Learning ; Unmanned Aerial Vehicles (UAV)
EI分类号
Air Navigation And Traffic Control:431.5 ; Ergonomics And Human Factors Engineering:461.4 ; Aircraft, General:652.1 ; Radar Systems And Equipment:716.2 ; Production Engineering:913.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9859656
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401558
专题南方科技大学
工学院_斯发基斯可信自主研究院
作者单位
1.Guilin University of Technology
2.Southern University of Science and Technology
3.Sichuan University
推荐引用方式
GB/T 7714
Xucheng Wang,Dan Zeng,Qijun Zhao,et al. Rank-Based Filter Pruning for Real-Time UAV Tracking[C],2022:01-06.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xucheng Wang]的文章
[Dan Zeng]的文章
[Qijun Zhao]的文章
百度学术
百度学术中相似的文章
[Xucheng Wang]的文章
[Dan Zeng]的文章
[Qijun Zhao]的文章
必应学术
必应学术中相似的文章
[Xucheng Wang]的文章
[Dan Zeng]的文章
[Qijun Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。